Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Географические информационные системы




В конце XX в. благодаря активной автоматизации и компьюте­ризации картография стала держательницей и распорядительни­цей огромных массивов информации о важнейших аспектах суще­ствования, взаимодействия и функционирования природы и общества. Информатизация проникла во все сферы науки и прак­тики — от школьного образования до высокой государственной политики.

В науках о Земле на базе информационных технологий созданы географические информационные системы (ГИС) — особые ап­паратно-программные комплексы, обеспечивающие сбор, об­работку, отображение и распространение пространственно-ко­ординированных данных. Одна из основных функций ГИС — со­здание и использование компьютерных (электронных) карт, атласов и других картографических произведений. Первые ГИС были созданы в Канаде, США и Швеции для изучения природных ресурсов в середине 1960-х годах, а сейчас в промышленно развитых странах существуют тысячи ГИС, исполь­зуемых в экономике, политике, экологии, управлении и охране природных ресурсов, кадастре, науке, образовании и т.д. Они ин­тегрируют картографическую информацию, данные дистанцион­ного зондирования и экологического мониторинга, статистику и переписи, гидрометеорологические наблюдения, экспедиционные материалы, результаты бурения и др.

В создании ГИС участвуют многие международные организа­ции (ООН, ЮНЕСКО, Программа по окружающей среде и др.), правительственные учреждения, министерства и ведомства, кар­тографические, геологические и земельные службы, частные фир­мы, научно-исследовательские институты и университеты. На раз­работку ГИС затрачивают значительные финансовые средства, в

17*


260 Глава XIV. Картография и геоинформатика


Подсистемы ГИС



 


деле участвуют целые отрасли промышленности, создается раз­ветвленная геоинформационная инфраструктура. Во многих стра­нах образованы национальные и региональные органы, в задачи которых входит развитие ГИС и автоматизированного картографи­рования, а также определение государственной политики в облас­ти геоинформатики.

В государственных программах России много внимания уделя­ется развитию геоинформационных технологий для картографи­рования, а также созданию ГИС разного ранга и назначения для целей управления. В крупнейших городах России — Москве, Санкт-Петербурге, Екатеринбурге, Новосибирске, Иркутске и Хабаров­ске — созданы центры геоинформации. К ним привязывают мест­ные ТИС и центры сбора аэрокосмических данных. В единую ГИС-инфраструктуру России постепенно включают базы и банки данных научных институтов и университетов.

Принято различать следующие территориальные уровни ГИС и соответствующие им масштабы (табл. 14.1).


Подсистемы ГИС

К обязательным признакам ГИС относятся:

♦ географическая (пространственная) привязка данных;

♦ генерирование новой информации на основе синтеза имею­щихся данных;

♦ отражение пространственно-временных связей объектов;

♦ обеспечение принятия решений;

♦ возможность оперативного обновления баз данных за счет вновь поступающей информации.

Структуру ГИС обычно представляют как набор информаци­онных слоев (рис. 14.1). К примеру, базовый слой содержит данные о рельефе, затем следуют слои гидрографии, дорожной сети, на­селенных пунктов, почв, растительного покрова, распростране-


 


Таблица 14.1 Территориальные уровни ГИС

 

Вид ГИС Охват территории Масштабы
Глобальные 5 х108км2   1 000 000-1:100 000 000
Национальные 104-107 км2   1 000 000—1:10 000 000
Региональные 103-105 км2   100 000-1:2 500 000
Муниципальные 103 км2   1 000-1:50 000
Локальные (заповедники, национальные парки и др.) 102-103 км2   1000-1:100 000

ГИС подразделяют и по проблемной ориентации (тематике). Созданы специализированные земельные информационные сис­темы (ЗИС), кадастровые (КИС), экологические (ЭГИС), учеб­ные, морские и многие иные системы. Одни из наиболее распрос­траненных в географии — ГИС ресурсного типа. Они создаются на основе обширных и разнообразных по тематике информационных массивов и предназначены для инвентаризации, оценки, охраны и рационального использования ресурсов, прогноза результатов их эксплуатации.


Рис. 14.1. Принцип расположения информационных слоев в географичес­кой информационной системе.


               
   
 
 
 
   
 
   

Глава XIV. Картография и геоинформатика

Рис. 14.2. Экран «Тематические карты» ГИС-Черное море.

ния загрязняющих веществ и т.д. Условно эти слои можно рассмат­ривать в виде «этажерки», на каждой полочке которой хранится карта или цифровая информация по определенной теме.

В процессе решения поставленных задач слои анализируют по отдельности или совместно в разных комбинациях, выполняют их взаимное наложение (оверлей) и районирование, рассчитывают корреляции и т.п. Скажем, по данным о рельефе можно построить производный слой углов наклона местности, по данным о дорож­ной сети и населенных пунктах — рассчитать степень обеспечен­ности территории дорожной сетью и сформировать новый слой.

На рис. 14.2 представлен экран, показывающий в качестве при­мера тематику разделов ГИС—Черное море — международной си­стемы, созданной для принятия решений по охране ресурсов Чер­номорского бассейна. На экране видны кнопки («иконки»), при нажатии которых открываются соответствующие наборы темати­ческих карт: география, геология, химическая океанография и заг­рязнение вод, метеорология, физическая океанография, биоло­гия, рыбные ресурсы. Нажатие любой кнопки на экране вызывает соответствующий тематический раздел. Затем с помощью меню в этом разделе выбирают нужные карты и анализируют их порознь или совместно, сопоставляют друг с другом, вычисляют количе­ственные параметры в любой точке акватории. Можно получать данные и для какого-либо одного заданного пункта по всем слоям сразу. Кроме того, есть возможность строить производные слои, например вычислять температурные градиенты или составлять кор­реляционные карты. На рис. 14.3 проиллюстрирован расчет сколь-


Рис. 14.3. Картографирование пространственных корреляций с помощью ГИС.

а и б — исходные карты солености и температуры поверхностных вод Черно­го моря; в — карта изокоррелят.

зящего показателя связи по двум картам Черного моря: солености и температуры поверхностного слоя — для одного и того же срока (март). В результате построена карта изокоррелят (принцип ее со­ставления рассмотрен в разд. 13.3). На карте видны поля положи­тельных корреляций в западной и северо-западной частях аквато­рии и значительные отрицательные корреляции в восточной части. При создании ГИС главное внимание всегда уделяют выбору географической основы и базовой карты, которая служит карка­сом для последующей привязки, совмещения и координирования всех данных, поступающих в ГИС, для взаимного согласования информационных слоев и последующего анализа с применением оверлея. В зависимости от тематики и проблемной ориентации ГИС в качестве базовых могут быть избраны:

♦ карты административно-территориального деления;

♦ топографические и общегеографические карты;

♦ кадастровые карты и планы;



Глава XIV. Картография и геоинформатика


Подсистемы ГИС



 


фотокарты и фотопортреты местности;

♦ ландшафтные карты;

♦ карты природного районирования и схемы природных кон­туров;

♦ карты использования земель.

Возможны и комбинации указанных основ, например ландшаф­тных карт с топографическими или фотокарт с картами использова­ния земель и т.п. В каждом конкретном случае выбор и дополнитель­ная подготовка базовой карты (например, ее разгрузка или нанесе­ние дополнительной информации) составляют центральную задачу этапа географо-картографического обоснования ГИС.

Сердцевину всякой ГИС составляет автоматизированная кар­тографическая система (АКС) — комплекс приборов и программ­ных средств, обеспечивающих создание и использование карт. АКС состоит из ряда подсистем, важнейшими из которых являются подсистемы ввода, обработки и вывода информации (рис. 14.4).

Подсистема ввода информации — это устройства для преобра­зования пространственной информации в цифровую форму и вво­да ее в память компьютера или в базу данных. Для цифрования применяют цифрователи (дигитайзеры) и сканеры. С помощью цифрователей на исходной карте прослеживают и обводят конту­ры и другие обозначения, а в память компьютера при этом посту­пают текущие координаты этих контуров и линий в цифровой форме. Сам процесс прослеживания оператор выполняет вручную, с чем связаны большая трудоемкость работ и возникновение погрешно­стей при обводе линий. Сканеры же осуществляют автоматическое

БАЗЫ ДАННЫХ

Цифрование карт
Тексты
СУБД

ОБРАБОТКА

БЛОК ВЫВОДА
БЛОК ВВОДА
БЛОК ОБРАБОТКИ
Карты

снимков

Снимки

БЛОК ИЗДАНИЯ
Таблицы

| Статистика

Рис. 14.4. Структура ГИС.


считывание информации последовательно по всему полю карты, строка за строкой. Сама карта размещается на планшете или на барабане. Сканирование выполняется быстро и точно, но прихо­дится дополнительно разделять (распознавать) оцифрованные эле­менты: реки, дороги, другие контуры и т.п. Качественные и коли­чественные характеристики цифруемых объектов, а также статис­тические данные вводят с клавиатуры компьютера. Вся цифровая информация поступает в базы данных.

Базы данных упорядоченные массивы данных по какой-либо теме (темам), представленные в цифровой форме, например базы данных о рельефе, населенных пунктах, базы геологической или экологической информации. Формирование баз данных, доступ и работу с ними обеспечивает система управления базами данных (СУБД), которая позволяет быстро находить требуемую информа­цию и проводить ее дальнейшую обработку. Если базы данных раз­мещены на нескольких компьютерах (например, в разных учрежде­ниях или даже в разных городах и странах), то их называют распреде­ленными базами данных. Это удобно, так как каждая организация формирует свой массив, следит за ним и поддерживает на уровне современности. Совокупности баз данных и средств управления ими образуют банки данных. Распределенные базы и банки данных соеди­няют компьютерными сетями, и доступ к ним (запросы, поиск, чтение, обновление) осуществляется под единым управлением.

Подсистема обработки информации состоит из самого компь­ютера, системы управления и программного обеспечения. Созда­ны сотни разнообразных специализированных программ (пакетов программ), которые позволяют выбирать нужную проекцию, при­емы генерализации и способы изображения, строить карты, со­вмещать их друг с другом, визуализировать и выводить на печать. Программные комплексы способны выполнять и более сложные работы: проводить анализ территории, дешифрировать снимки и классифицировать картографируемые объекты, моделировать про­цессы, сопоставлять, оценивать альтернативные варианты и вы­бирать оптимальный путь решения. А современные «интеллекту­альные» программы моделируют даже некоторые процессы чело­веческого мышления.

Большая часть подсистем обработки информации работают в диалоговом (интерактивном) режиме, в ходе которого идет не­посредственный двусторонний обмен информацией между картог­рафом и компьютером.



Глава XIV. Картография и геоинформатика


Геоинформатика— наука,технология,производство 267


 


Подсистема вывода (выдачи) информации комплекс устройств для визуализации обработанной информации в картографической форме. Это экраны (дисплеи), печатающие устройства (принте­ры) различной конструкции, чертежные автоматы (плоттеры)

и др. С их помощью быстро выводят результаты картографирова­ния и варианты решений в той форме, которая удобна пользова­телю. Это могут быть не только карты, но и тексты, графики, трех­мерные модели, таблицы, однако если речь идет о пространствен­ной информации, то чаще всего она дается в картографической форме, наиболее привычной и легко обозримой.

Все подсистемы, входящие в автоматические картографичес­кие системы, входят также и в ГИС. В состав картографической ГИС производственного назначения включают еще и подсистему издания карт, которая позволяет изготовлять печатные формы и печатать тиражи карт. Если тираж небольшой, что обычно при выполнении научных исследований, то используют настольные картографические издательские системы.

ГИС, ориентированные на работу с аэрокосмической инфор­мацией, включают специализированную подсистему обработки изображений. В этом случае программное обеспечение позволяет выполнять различные операции со снимками: проводить их кор­рекцию, преобразование, улучшение, автоматическое распозна­вание и дешифрирование, классификацию и др.

Особую подсистему в высокоразвитых ГИС может составлять база знаний, т.е. совокупность формализованных знаний, логичес­ких правил и программных средств для решения задач определен­ного типа (например, для проведения границ или районирования территории). Базы знаний помогают диагностировать состояние геосистем, предлагать варианты решения проблемных ситуаций, давать прогноз развития. Можно считать, что в базах знаний реа­лизуются некоторые принципы функционирования искусственного интеллекта.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...