Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

65. Окислительно-восстановительный потенциал.




65. Окислительно-восстановительный потенциал.

Окислительно-восстановительный потенциал (ОВП) – это параметр, описывающий уровень окисления (оксидации) и восстановления вещества. Другими словами, это способность отдавать или принимать электроны в результате взаимодействия химических элементов в зависимости от природы процессов и условий протекания реакций.

Окислительно-восстановительный потенциал определяют как электрический потенциал, устанавливающийся при погружении платины или золота (инертный электрод) в окислительно-восстановительную среду, то есть в раствор, содержащий как восстановленное соединение, так и окисленное соединение. Если полуреакцию восстановления представить уравнением:

Aox + n·e− → Ared,

то количественная зависимость окислительно-восстановительного потенциала от концентрации (точнее активностей) реагирующих веществ выражается уравнением Нернста.

Окислительно-восстановительный потенциал определяют электрохимическими методами с использованием стеклянного электрода с  функцией[2] и выражают в милливольтах (мВ) относительно стандартного водородного электрода в стандартных условиях

66. Уравнение Нернста. Направление ОВР. Влияние среды на ОВР.

Уравнение Нернста — уравнение, связывающее окислительно-восстановительный потенциал системы с активностями веществ, входящих в электрохимическое уравнение, и стандартными электродными потенциалами окислительно-восстановительных пар. ,

В зависимости от рН среды меняется характер протекания окислительно-восстановительного процесса между одними и теми же реагентами. Например, взаимодействие восстановителя сульфита натрия Na2SO3 с окислителем перманганатом калия KMnO4 в кислотной (рН < 7), нейтральной (pH = 7) и щелочной (pH > 7 ) среде приводит к образованию различных продуктов

Прибавление к раствору кислоты (понижение рН) вызывает увеличение концентрации ионов Н+ и в соответствии с принципом Ле Шателье смещает равновесие в сторону обратной реакции. Прибавление раствора щелочи (повышение рН) смещает равновесие в направлении прямой реакции.

67. Связь энергии Гиббса со стандартным электродным потенциалом.

Используя свойства экстенсивности термодинамических потенциалов, математическим следствием которых является соотношение Гиббса-Дюгема, можно показать, что химический потенциал для системы с одним типом частиц есть отношение энергии Гиббса к числу молей вещества n в системе:

Если система состоит из частиц нескольких сортов с числом молей частиц каждого сорта, то соотношения Гиббса-Дюгема приводят к выражению

Химический потенциал применяется при анализе систем с переменным числом частиц, а также при изучении фазовых переходов. Так, исходя из соотношений Гиббса — Дюгема и из условий равенства химических потенциалов находящихся в равновесии друг с другом фаз, можно получить уравнение Клапейрона — Клаузиуса, определяющее линию сосуществования двух фаз в координатах через термодинамические параметры (удельные объёмы) фаз и теплоту перехода между фазами

Если пластинку металла М погрузить в раствор, содержащий его ионы Мn+(р) + nе- = М(к)

то между металлом и раствором возникнет разность потенциалов, называемая электродным потекциалом. Эта разность зависит от природы металла и концентрации (точнее активности) ионов в растворе, а также от температуры и pH среды.

Связь между энергией Гиббса Δ G и электродным потенциалом φ выражается уравнением:

— Δ G = nFφ,

где n — количество передаваемого электронами вещества, F — постоянная Фарадея.

 

68. Определение и классификация электрохимических явлений. Гальванические элементы: классификация, электродные процессы, схемы.

Электрохимическими процессами называют процессы взаимного превращения химической и электрической форм энергии.

К электрохимическим процессам относятся:

Возникновение разности потенциалов и, следовательно, постоянного электрического тока в результате протекания химической реакции. Устройства, в которых реализуется это явление, называют химическими источниками тока (например, гальванические элементы, аккумуляторы).

Химические процессы, протекающие при пропускании постоянного электрического тока через электролит. Это явление называют электролизом, а устройства, в которых оно реализуется – электролизерами.

Электрохимический процесс может быть обратимым, т. е. протекать в одном или другом направлении в зависимости от условий (примером такой обратимости являются заряжение и разряд аккумулятора).

Простейшая электрохимическая система состоит из двух электродов и ионного проводника между ними. Для обеспечения работы системы электроды соединяют друг с другом металлическим проводником, называемым внешней цепью электрохимической системы. Ионным проводником служат растворы или расплавы электролитов, а также твердые электролиты. Электродами называют проводники, имеющие электронную проводимость и находящиеся в контакте с ионным проводником.

Гальвани́ ческий элеме́ нт — химический источник электрического тока, основанный на взаимодействии двух металлов и/или их оксидов в электролите, приводящем к возникновению в замкнутой цепи электрического тока.

Гальванические элементы можно разделить на две группы:

а) химические гальванические элементы;

б) концентрационные гальванические элементы.

Химические гальванические элементы (например, гальванические элемент Даниэля - Якоби, Вестона) состоят из двух различных электродов, помещенных в растворы электролитов одинаковой концентрации. Для этих гальванических элементов характерно превращение энергии химической реакции в энергию электрического тока. К этой группе гальванических элементов принадлежит и гальванический элемент Вестона, используемый в качестве гальванического элемента - эталона.

Концентрационные гальванические элементы состоят из двух одинаковых электродов, помещенных в растворы различных концентраций. Опыт показывает, что электрод, погруженный в менее концентрированный раствор, является отрицательным электродом, а другой, погруженный в более концентрированный раствор - положительным.

Сопоставление опытных фактов приводит к заключению о том, что в основе работы всякого гальванического элемента лежат окислительно - восстановительные реакции, протекающие раздельно: на отрицательном электроде (аноде) - окисление, а на положительном (катоде) - восстановление.

При обозначении устройства гальванических элементов пользуются условной записью: вертикальными черточками обозначаются поверхности раздела фаз. Потенциал, возникающий на границе раздела двух растворов называется диффузионным. Чтобы подчеркнуть его отсутствие, в условной записи элемента используется двойная вертикальная черта:

Zn | ZnSO4 || CuSO4 | Cu

К электрохимическим процессам относятся:

1) возникновение разности потенциалов и, следовательно, постоянного электрического тока в результате протекания химической реакции. Устройства, в которых реализуется это явление, называют химическими источниками тока (например, гальванические элементы, аккумуляторы);

2) химические процессы, протекающие при пропускании постоянного электрического тока через электролит. Это явление называют электролизом, а устройства, в которых оно реализуется, – электролизерами.

Электрохимический процесс может быть обратимым, т. е. протекать в одном или другом направлении в зависимости от условий (примером такой обратимости являются разряд и заряд аккумулятора).

Простейшая электрохимическая система состоит из двух электродов и ионного проводника между ними. Для обеспечения работы системы электроды соединяют друг с другом металлическим проводником, называемым внешней цепью электрохимической системы. Ионным проводником служат растворы или расплавы электролитов, а также твердые электролиты. Электродами называют проводники, имеющие электронную проводимость и находящиеся в контакте с ионным проводником.

Электродные процессы– процессы, связанные с переносом зарядов через границу между электродом и раствором. Катодные процессы связаны с восстановлением молекул или ионов реагирующего вещества, анодные – с окислением реагирующего вещества и с растворением металла электрода.

Возможность протекания того или иного электродного процесса в общем случае определяется изменением Δ H и Δ S в ходе соответствующей химической реакции. Зная эти изменения, по уравнению Гельмгольца можно рассчитать минимальную величину напряжения, которое необходимо наложить на электроды для протекания данного электродного процесса.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...