Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Понятие об энтропии. Уравнение Больцмана. Стандартная энтропия. Расчет стандартного изменения энтропии реакции.




Термодинами́ческая энтропи́я S, часто просто именуемая энтропия, в химии и термодинамике является функцией состояния термодинамической системы; её существование постулируется вторым началом термодинамики.

Понятие энтропии было впервые введено в 1865 году Р. Клаузиусом. Он определил изменение энтропии термодинамической системы при обратимом процессе как отношение изменения общего количества тепла ΔQ к величине абсолютной температуры T:

Р. Клаузиус дал величине S имя «энтропия» - «изменение» (изменение, превращение, преобразование). Данное равенство относится к изменению энтропии, не определяя полностью саму энтропию.

Эта формула применима только для изотермического процесса (происходящего при постоянной температуре). Её обобщение на случай произвольного квазистатического процесса выглядит так:

,

где - приращение (дифференциал) энтропии, а - бесконечно малое приращение количества теплоты.

Необходимо обратить внимание на то, что рассматриваемое термодинамическое определение применимо только к квазистатическим процессам (состоящим из непрерывно следующих друг за другом состояний равновесия).

Поскольку энтропия является функцией состояния, в левой части равенства стоит её полный дифференциал. Напротив, количество теплоты является функцией процесса, в котором эта теплота была передана, поэтому считать полным дифференциалом нельзя.

Энтропия, таким образом, согласно выше описанному, определена вплоть до произвольной аддитивной постоянной. Третье начало термодинамики позволяет определить её точнее: предел величины энтропии равновесной системы при стремлении температуры к абсолютному нулю полагают равным нулю.

В 1877 году Л. Больцман нашёл, что энтропия системы может относиться к количеству возможных «микросостояний» (микроскопических состояний), согласующихся с их термодинамическими свойствами. Рассмотрим, например, идеальный газ в сосуде. Микросостояние определено как позиции и импульсы (моменты движения) каждого составляющего систему атома. Связность предъявляет к нам требования рассматривать только те микросостояния, для которых: (I) месторасположения всех частей расположены в рамках сосуда, (II) для получения общей энергии газа кинетические энергии атомов суммируются. Больцман постулировал, что:

где константу k=1,38•10–23 Дж/К мы знаем теперь как постоянную Больцмана, а Ω является числом микросостояний, которые возможны в имеющемся макроскопическом состоянии (статистический вес состояния). Этот постулат, известный как принцип Больцмана, может быть оценен как начало статистической механики, которая описывает термодинамические системы, используя статистическое поведение составляющих их компонентов. Принцип Больцмана связывает микроскопические свойства системы (Ω) с одним из её термодинамических свойств (S).

Согласно определению Больцмана, энтропия является просто функцией состояния. Так как Ω может быть только натуральным числом (1,2,3,…), то энтропия Больцмана должна быть положительной — исходя из свойств логарифма.

Размерность энтропии 1 моля вещества совпадает с размерностью газовой постоянной R и равна Дж∙моль–1∙K–1. Изменение энтропии *) в необратимых и обратимых процессах передается соотношениями ΔS > Q / T и ΔS = Q / T. Например, изменение энтропии плавления равно теплоте (энтальпии) плавления ΔSпл = ΔHпл/Tпл. Для химической реакции изменение энтропии аналогично изменению энтальпии ​

Здесь ΔS° соответствует энтропии стандартного состояния. Стандартные энтропии простых веществ не равны нулю. В отличие от других термодинамических функций энтропия идеально кристаллического тела при абсолютном нуле равна нулю (постулат Планка), поскольку W = 1.

Энтропия вещества или системы тел при определенной температуре является абсолютной величиной.

Энтропия зависит от:

-агрегатного состояния вещества. Энтропия увеличивается при переходе от твердого к жидкому и особенно к газообразному состоянию (вода, лед, пар).

-изотопного состава (H2O и D2O).

-молекулярной массы однотипных соединений (CH4, C2H6, н-C4H10).

-строения молекулы (н-C4H10, изо-C4H10).

-кристаллической структуры (аллотропии) – алмаз, графит.

Изменение энтропии в процессе этого (твердое тело-жидкость) фазового перехода можно найти просто, если считать процесс равновесным.

Это вполне допустимое приближение, если считать, что разность температур между системой и тем объектом, который поставляет системе тепло, не слишком велика, намного меньше температуры плавления. Тогда можно использовать термодинамический смысл энтропии: с точки зрения термодинамики энтропия – это такая функция состояния системы, изменение которой dS в элементарном равновесном процессе равно отношению порции тепла δQ, которое система получает в этом процессе, к температуре системы Т:

Так как температура системы в данном фазовом переходе не меняется и равна температуре плавления, то подынтегральное выражение – это величина, которая в ходе процесса не меняется, поэтому она от массы m вещества не зависит. Тогда

Из этой формулы следует, что при плавлении энтропия возрастает, а при кристаллизации уменьшается. Физический смысл этого результата достаточно ясен: фазовая область молекулы в твердом теле гораздо меньше, чем в жидкости, так как в твердом теле каждой молекуле доступна только малая область пространства между соседними узлами кристаллической решетки, а в жидкости молекулы занимают всю область пространства. Поэтому при равной температуре энтропия твердого тела меньше энтропии жидкости. Это означает, что твердое тело представляет собой более упорядоченную, и менее хаотичную систему, чем жидкость.

Применение энтропии в этом (жидкость-газ) процессе можно найти просто, считая процесс равновесным. И опять это вполне допустимое приближение, при условии, что разность температур между системой и «поставщиком» тепла невелика, т.е. намного меньше температуры кипения. Тогда

 

Из формулы следует, что при испарении энтропия возрастает, а при конденсации уменьшается.

Физический смысл этого результата состоит в различии фазовой области молекулы в жидкости и газе. Хотя в жидкости и газе каждой молекуле доступна вся область пространства, занятая системой, но сама эта область для жидкости существенно меньше, чем для газа. В жидкости силы притяжения между молекулами удерживают их на определенном расстоянии друг от друга. Поэтому каждая молекула хотя и имеет возможность свободно мигрировать по области пространства, занятой жидкостью, но не имеет возможности «оторваться от коллектива» остальных молекул: стоит ей оторваться от одной молекулы, как тут же притягивается другая. Поэтому объем жидкости зависит от её количества и никак не связан с объемом сосуда.

Молекулы газа ведут себя иначе. У них гораздо больше свободы, среднее расстояние между ними таково, что силы притяжения очень малы, и молекулы «замечают друг друга» лишь при столкновениях. В результате газ всегда занимает весь объем сосуда.

Поэтому при равных температурах фазовая область молекул газа значительно больше фазовой области молекул жидкости, и энтропия газа больше энтропии жидкости. Газ, по сравнению с жидкостью, гораздо менее упорядоченная, более хаотичная система.

Изменение стандартной молярной энтропии в химической реакции определяется уравнением:

Следует обратить внимание на то, что изменение энтропии в рассмотренном примере оказывается отрицательным. Этого можно было ожидать, если учесть, что, согласно уравнению рассматриваемой реакции, суммарное количество газообразных реагентов равно 1,5 моль, а суммарное количество газообразных продуктов - только 1 моль. Таким образом, в результате реакции происходит уменьшение общего количества газов. Вместе с тем нам известно, что реакции горения принадлежат к числу экзотермических реакций. Следовательно, результатом их протекания является рассеяние энергии, а это заставляет ожидать возрастания энтропии, а не ее уменьшения. Далее, следует учесть, что горение газообразного водорода при 25°С, вызванное первоначальным инициированием, протекает затем самопроизвольно и с большой интенсивностью. Но разве не должно в таком случае изменение энтропии в данной реакции быть положительным, как того требует второй закон термодинамики? Оказывается - нет или по крайней мере не обязательно должно. Второй закон термодинамики требует, чтобы в результате самопроизвольного процесса возрастала суммарная энтропия системы и ее окружения. Вычисленное выше изменение энтропии характеризует только рассматриваемую химическую систему, состоящую из реагентов и продуктов, которые принимают участие в горении газообразного водорода при 25°С.

 

Понятие об энергии Гиббса и ее изменение как мера реакционной способности. Критерий самопроизвольности процессов. Энтальпийный и энтропийный факторы процессов. Стандартная энергия Гиббса.

Рассмотрим экзотермическую реакцию:

СО + 2Н2=> СН3ОН - 93,5 кДж

Действие энтальпийного фактора обусловливает ее протекание в прямом направлении.

∆H <0 (процесс экзотермический)

Однако наибольшее значение энтропии достигается при полном разложении метанола на водород и оксид углерода, так как при этом число молекул газов возрастает втрое.

Вычислим изменение энтропии системы при прямой реакции.

Изменение энтропии в ходе химической реакции ( Δ S) равно сумме энтропий продуктов за вычетом суммы энтропии исходных веществ.

Таблица 3. Стандартные энтропии веществ-участников реакции

Вещество Стандартная энтропия, S0 Дж/моль·K
CO (газ) 197,5
H2(газ) 130,5
CH3OH (газ) 240,1

 

ΔS° = 240,1 Дж/моль·K· 1 моль —(197,5 Дж/моль·K· 1 моль + 130,5 Дж/моль·K· 2 моль) = -218,4 Дж/К.

Отсюда, при синтезе метанола энтропия уменьшается.

Таким образом энтальпийный и энропийный факторы действуют в противоположных направлениях.

Для того чтобы учесть действие обоих факторов в термодинамике используется функция состояния системы - энергия Гиббса (G). Она применяется для изобарно-изотермических условий и связана с энтальпией и энтропией простым соотношением:

G = H - TS.

Изменение энергии Гиббса в ходе химической реакции:

G = ∆H - T∆S

Характер этого изменения позволяет судить о принципиальной возможности или невозможности осуществления процесса.

Поделиться:





Читайте также:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...