Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Равновесие в растворах комплексных соединений. Константа нестойкости. Возможности разрушения комплексных соединений.




При диссоциации в растворах и многих химических реакциях комплекс сохраняется:

[Ni(NH3)4]SO4 ® [Ni(NH3)4]2+ + SO42-,

[Ni(NH3)4]SO4 + BaCl2 = [Ni(NH3)4]Cl2 + BaSO4¯.

Обычно комплексные соединения в растворах диссоциируют на внешнюю и внутреннюю координационные сферы практически полностью по типу сильных электролитов (первичная диссоциация). Комплексные соединения обладают различной прочностью внутренней координационной сферы. Наряду с соединениями, внутренняя сфера которых отличается значительной прочностью и для которых диссоциация ничтожно мала, существуют соединения с крайне непрочной внутренней сферой. Растворы этих соединений практически не содержат комплексных ионов, так как они полностью диссоциируют на свои составные части (двойные соли). Диссоциация внутренней координационной сферы носит название вторичной, является обратимым процессом и проходит по типу слабых электролитов. Момент наступления равновесия характеризуется константой равновесия, которая в случае комплексного иона носит название константы нестойкости (Кн).

Значения констант нестойкости различных комплексных ионов колеблются в широких пределах и могут служить мерой устойчивости комплекса. Чем устойчивее комплексный ион, тем меньше его константа нестойкости. Так, среди однотипных соединений, обладающих различными значениями констант нестойкости

[Ag(NO2)2]- [Ag(NH3)2]+ [Ag(S2O3)2]3- [Ag(CN2)]-

1,3∙10-3 6,8∙10-8 1∙10-13 1∙10-21

наиболее устойчив комплекс [Ag(CN2)]-, а наименее устойчив - [Ag(NO2)2]-.

При сравнении устойчивости разных по типу комплексных ионов необходимо сначала рассчитать (или оценить) концентрацию комплексообразователя в растворе, а только потом делать вывод. Например, сравним устойчивость комплексных ионов [Ag(CN2)]- и [Fe(CN)6]4-. концентрацию комплексообразователя в растворе, а только потом делать вывод. Например, сравним устойчивость комплексных ионов [Ag(CN2)]- и [Fe(CN)6]4-. Для этого будем исходить из уравнения вторичной диссоциации комплексных ионов и значений констант нестойкости. Пусть концентрация комплексных ионов в растворе равна См (моль/л),часть этой концентрации Сх (моль/л) продиссоциировала на комплексообразователь и лиганды. Исходя из уравнения диссоциации, можно рассчитать равновесную концентрацию всех ионов в растворе:

[Ag(CN)2]- = Ag+ + 2СN- [Fe(CN)6 ]4- = Fe+2 + 6CN-

нач. состояние Cм 0 0 См 0 0

продиссоциировало Сх Сх

равновесие См-Сх х 2х См-Сх х 6х

 

[Ag+][CN-]2 (x)(2x)23 [Fe+2][CN]6 (x) (6x)6 66 х7

Kнест = —————— = ————— = —— = 10-21, Kнест = —————— = ———— = —— =∙10-38.

[Ag(CN-)2-] (Cм- Сх) См [Fe(CN)64-] (См –Сх) См

Если принять, что Сх << Cм = 1 моль/л, то выражение упростится и можно оценить концентрацию комплексообразователя (х)

х = См (Ag+) ≈ (10-21 / 4) 1/3 ≈ 10 -7 (моль/л); х = См (Fe+2) ≈ (10-38 / 66)1/7 ≈ 10-6 (моль/л).

Очевидно, комплексный ион [Ag(CN)2]- прочнее иона [Fe(CN)6 ]4-, хотя сравнение значений Кнест. говорит об обратном.

Трансформация или разрушение комплексного соединения происходит в тех случаях, когда компоненты его внутренней сферы, вступая во взаимодействие с добавленным реагентом, связываются или трансформируются вследствие образования: а) более устойчивого комплекса; б) малодиссоциирующего соединения; в) малорастворимого соединения; г) окислительно-восстановительных превращений. Проиллюстрируем эти положения на примерах.

А. Трансформация комплекса с образованием более устойчивого комплекса в результате:

- более прочного связывания лигандов с новым комплексообразователем, т. е. реакции обмена комплексообразователя:

[Сu(NН3)4]S04 + 2Н24 à СиSО4 + 2[NН4]24

([Сu(NН3)4]2++ à Сu2+ + [NН4]+)

- более прочного связывания комплексообразователя с новым лигандом, т. е. реакции обмена лигандами во внутренней сфере:

[Pt(NH3)4Cl2] + 4КСN à К2[Рt(СN)4] + 4NН3 + 2КСl

([Pt(NH3)4Cl2]+ 4СN- à [Рt(СN)4]2-+ 4NH3)

Замена лигандов во внутренней сфере комплексного соединения протекает ступенчато, причем при наличии различных лигандов вначале замещается тот лиганд, связь которого с комплексообразователем лабильна:

[Рt(NН3)2С12] + КI à [Рt(NН3)2ClI] + КС1

([Рt(NН3)2С12] + I- à [Рt(NН3)2СlI] + Сl-)

Рассмотренные реакции трансформации комплексных соединений всегда протекают в сторону образования более устойчивых комплексных соединений, у которых константа нестойкости внутренней сферы меньше, чем у исходных соединений.

Б. Разрушение гидроксокомплексов в кислой среде из-за образования малодиссоциированного соединения

2[Zn(ОН)4] + 4НС1 à 2NaCl + ZnCl2 + 4Н2O

([Zn(ОН)4]- + 4Н+ à Zn2+ + 4Н20)

В. Разрушение комплексного соединения с образованием малорастворимого соединения, в котором комплексообразователь или лиганд связан прочнее, чем в комплексе:

[Ag(NH3)2]Cl + KI àAgI + 2КСl + 2NН3

([Ag(NH3)2]+ + I- à AgI + 2NH3)

Г. Разрушение или трансформация комплексного соединения в результате окислительно-восстановительных превращений:

- лиганда:

K2[CdI4] + Cl2 à 2КСl + СdС12 + 2I2

([CdI4]2- + Cl2 à Сd2+ + 2I2 + 4Сl-)

- комплексообразователя:

4[Fе(СN)6] + С12 à 2К3[Fе(СN)6] + 2КС1

(2[Fе (СN)6]4- + С12 à 2[Fе(СN)6] + 2Сl-)

Процесс комплексообразования сильно влияет на величины восстановительных потенциалов катионов d-металлов. Если восстановленная форма катиона металла образует с данным лигандом более устойчивый комплекс, чем его окисленная форма, то потенциал возрастает. Снижение потенциала происходит, когда более устойчивый комплекс образует окисленная форма. Иллюстрацией сказанному являются следующие данные.

Fe3+ + e- ßà Fe2+

φ0 = 0,35 B

Эти особенности окислительно-восстановительных свойств ионов "металлов жизни" в биокомплексах очень важны для понимания биохимических процессов, протекающих при их участии.

 

 

Окислительно-восстановительные реакции. Степень окисления. Окислители и восстановители. Процесс окисления и восстановления. Классификация окислительно-восстановительных реакций. Составление уравнений окислительно-восстановительных реакций методами электронного и ионно-электронного баланса.

Окислительно-восстановительные реакции (ОВР) - химические реакции, в которых происходит изменение степеней окисления атомов, входящих в состав реагирующих веществ.

К таковым относят реакции, в которых реагирующие вещества обмениваются электронами, изменяя при этом степени окисления атомов элементов, входящих в состав реагирующих веществ.

Например:

Zn + 2H+ → Zn2+ + H2↑,

FeS2 + 8HNO3(конц) = Fe(NO3)3 + 5NO↑ + 2H2SO4 + 2H2O,

Подавляющее большинство химических реакций относятся к окислительно-восстановительным, они играют исключительно важную роль.

Степень окисления - это условный заряд атома в молекуле, вычисленный в предположении, что молекула состоит из ионов и в целом электронейтральна.

Наиболее электроотрицательные элементы в соединении имеют отрицательные степени окисления, а атомы элементов с меньшей электроотрицательностью - положительные.

Степень окисления - формальное понятие; в ряде случаев степень окисления не совпадает с валентностью.

Например: N2H4 (гидразин)

степень окисления азота – -2; валентность азота – 3.

Для вычисления степени окисления элемента следует учитывать следующие положения:

1. Степени окисления атомов в простых веществах равны нулю (Na0; H20).

2. Алгебраическая сумма степеней окисления всех атомов, входящих в состав молекулы, всегда равна нулю, а в сложном ионе эта сумма равна заряду иона.

3. Постоянную степень окисления имеют атомы: щелочных металлов (+1), щелочноземельных металлов (+2), водорода (+1) (кроме гидридов NaH, CaH2 и др., где степень окисления водорода -1), кислорода (-2) (кроме F2-1O+2 и пероксидов, содержащих группу –O–O–, в которой степень окисления кислорода -1).

4. Для элементов положительная степень окисления не может превышать величину, равную номеру группы периодической системы.

Примеры:

V2+5O5-2; Na2+1B4+3O7-2; K+1Cl+7O4-2; N-3H3+1; K2+1H+1P+5O4-2; Na2+1Cr2+6O7-2

Соединения, содержащие атомы элементов с максимальной степенью окисления, могут быть только окислителями за счет этих атомов, т.к. они уже отдали все свои валентные электроны и способны только принимать электроны. Максимальная степень окисления атома элемента равна номеру группы в периодической таблице, к которой относится данный элемент. Соединения, содержащие атомы элементов с минимальной степенью окисления могут служить только восстановителями, поскольку они способны лишь отдавать электроны, потому, что внешний энергетический уровень у таких атомов завершен восемью электронами. Минимальная степень окисления у атомов металлов равна 0, для неметаллов - (n–8) (где n- номер группы в периодической системе). Соединения, содержащие атомы элементов с промежуточной степенью окисления, могут быть и окислителями и восстановителями, в зависимости от партнера, с которым взаимодействуют и от условий реакции.

Таблица 37.1 – Важнейшие восстановители и окислители

Восстановители Окислители
Металлы, водород, уголь. Окись углерода (II) (CO). Сероводород (H2S); оксид серы (IV) (SO2); сернистая кислота H2SO3 и ее соли. Галогеноводородные кислоты и их соли. Катионы металлов в низших степенях окисления:SnCl2, FeCl2, MnSO4, Cr2(SO4)3. Азотистая кислота HNO2; аммиак NH3; гидразин NH2NH2; оксид азота(II) (NO). Катод при электролизе. Галогены. Перманганат калия(KMnO4); манганат калия (K2MnO4); оксид марганца (IV) (MnO2). Дихромат калия (K2Cr2O7); хромат калия (K2CrO4). Азотная кислота (HNO3). Серная кислота (H2SO4) конц. Оксид меди(II) (CuO); оксид свинца(IV) (PbO2); оксид серебра (Ag2O); пероксид водорода (H2O2). Хлорид железа(III) (FeCl3). Бертоллетова соль (KClO3). Анод при электролизе.

В окислительно-восстановительных реакциях электроны от одних атомов, молекул или ионов переходят к другим. Процесс отдачи электронов - окисление. При окислении степень окисления повышается:

H20 - 2ē ® 2H+

S-2 - 2ē ® S0

Al0 - 3ē ® Al+3

Процесс присоединения электронов - восстановление: При восстановлении степень окисления понижается.

Mn+4 + 2ē ® Mn+2

S0 + 2ē ® S-2

Cr+6 +3ē ® Cr+3

Атомы или ионы, которые в данной реакции присоединяют электроны являются окислителями, а которые отдают электроны - восстановителями.

Классификация окислительно-восстановительных реакций:

1. Межмолекулярные окислительно-восстановительные реакции.

Окислитель и восстановитель находятся в разных веществах; обмен электронами в этих реакциях происходит между различными атомами или молекулами:

S0 + O20 ® S+4O2-2

S - восстановитель; O2 - окислитель

Cu+2O + C+2O ® Cu0 + C+4O2

CO - восстановитель; CuO - окислитель

Сюда же относятся реакции между веществами, в которых атомы одного и того же элемента имеют разные степени окисления

2H2S-2 + H2S+4O3 ® 3S0 + 3H2O

Поделиться:





Читайте также:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...