Газодинамические функции (приведенные параметры)
Газодинамическими функциями (приведенными параметрами) называются отношния действительного значения какого- то параметра в произвольном течении потока газа к значению такого же параметра в сравнительном течении. В качестве сравнительных течений используют критические параметры и параметры торможения. В газодинамике широко используется коэффициент скорости, равный отношению действительной скорости к критической: (17) Cоотношения между параметрами заторможенного потока и текущими параметрами обозначаются: (18)
Одной из наиболее важных газодинамических функций в теории газодинамики является величина приведенной плотности потока массы газа: (19) В выражении (19) произведение имеет размерность: и выражение называется плотностью потока массы (удельный расход газа). Выражение определяет количество газа (кг), протекающее через единицу площади (м2) в единицу времени (с): , где G (кг/c)- секундный расход потока газа через сечение площадью F (м2). Величина 1/q характеризует относительную площадь сечения канала. Действительно, с учетом уравнения неразрывности: (20) Все приведенные газодинамические функции можно выразить друг через друга. Затем, зная значения масштабных параметров для приведения, можно числить и действительные параметры для потока газа. Из (18) видно, что в качестве основного параметра (независимой переменной) принимается коэффициент скорости λ. (21) Зависимость газодинамических функция от λ для (k=1.4), λmax=2.45 показаны на графике.
Пример расчета сопла Лаваля с использованием газодинамических функций Определить основные параметры и размеры критического и выходного сечений сопла Лаваля, через которое проходит 2 кг/с газа с параметрами po=1.5 МПа,
To= 2000oK при истечении в среду рср=0.12 МПа. (Для газа R=400дж/кг К, k=1.4). По таблицам или по графику находим значения приведенных параметров в критическом сечении (λ=1)
(d=0,047 м) Параметры в выходном сечении найдем, используя исходные данные: По найденной величине определим:
Тогда параметры потока в выходном сечении соcтавят:
Площадь выходного сечения сопла: (d=0,06 м) Лекция5 Скачки уплотнения
Рассмотрим картину распространения слабых возмущений в потоке газа, движущимся с различными скоростями. Источником возмущения может служить точечное тело или острие тонкого предмета, на которое набегает поток газа.
В это случае от источника возмущения, находящегося в точке Ао, будут распространяться сферические волны со скоростью с=a; Через некоторый промежуток времени: t, 2t, 3t возмущения достигают точек, расположенных на сферических поверхностях: at; a2t; a3t. Через достаточно большой промежуток времени возмущение распространится на весь объем, занимаемый газом.
В этом случае каждая определенная волна возмущения также является сферической, но точки, которых достигло возмущение, сносятся потоком со скоростью, равной с, вправо. Центр каждой волны смещается вправо с той же скоростью и в моменты времени: t,2t, 3t. и т.д. находятся на расстоянии сt; 2ct; 3ct. Как и в предыдущем случае, любая волна через достаточно большой промежуток времени распределяется на весь объем газа, толко навстречу потоку возмущения распространяются со скоростью с-a, а по потоку со скоростью с+a.
В этом случае сферическая волна возмущения сносится потоком на величину своего размера и источник возмущения всегда находится на фронте волны.
С течением времени возмущения распространяются в газе, но они никогда не могут проникнуть в область, находящуюся перед источником возмущения, т.е. левее линии АОВ.
Cкорость газа больше скорости звука с>a Область, куда могут проникнуть возмущения, становится меньше, чем в предыдущем случае. Она имеет вид конуса с вершиной в точке источника возмущения, описанного около сферических поверхностей. Ясно, что в точки, расположенные за пределами этой сферической поверхности, возмущения никогда не попадут.Область, в которую проникают возмущения от точечных источников, движущихся в газе со сверхзвуковой скоростью, называется конусом Маха. Угол называется углом возмущений.
Итак. Если скорость потока газа меньше скорости звука, то возмущения распространяются во всех объемах газа в том числе и в областях, находящихся перед источником возмущения. Поток “ чувствует” находящееся впереди него препятствие задолго до приближении к нему и поэтому заранее перестраивается в зависимости от характера препятствия.
с
Если скорость потока равна скорости звука или большее ее, то возмущение, возникающее от неподвижных предметов, не может проникнуть навстречу потоку. До тех пор, пока частица газа не пересечет поверхность конца возмущений, возмущение, создающее этот конус, никак не влияет на движение частицы. Поэтому при движении со сверхзвуковой скоростью поток частиц подходит к препятствию неподготовленным- он не “ чуствует “ препятствия, расположенного впереди. Невозможность предварительной перестройки (подготовки) потока при подходе к препятствию является главной особенностью сверхзвукового потока и в этом случае в потоке образуется поверхность разрыва. При пересечении потоком поверхности разрыва давление, температура и плотность возрастают, а скорость падает. Причем эти изменения происходят резко, скачком. Поверхность разрыва, перемещающаяся в пространстве, называется ударной волной, а неподвижную ударную волну- скачком уплотнения. Скачок уплотнения- зона резкого возрастания давления и плотности газа в сверхзвуковом потоке.
Скачок уплотнения сопровождается возрастанием давления, плотности, температуры, уменьшением скорости и чисел М и λ. Существуют прямой и косой скачки уплотнений. Прямой скачок- фронт скачка уплотнения перпендикулярен вектору скорости потока.
C1 90о C2 T1 T2
Уравнение энергии для прямого скачка примет вид: , где С1, T1 – cкорость и температура потока газа до скачка уплотнения; С2, T2 – cкорость и температура потока газа после скачка уплотнения;
Используя уравнения неразрывности и изменения количества движения, можно получить выражения для прямого скачка: (1) Из (1) видно, что в прямом скачке уплотнения сверхзвуковая скорость газа переходит в дозвуковую и чем выше скорость до скачка, тем сильнее скачок. С уменьшением начальной скорости с1 скачок ослабевает и исчезает совсем при . Давление и плотность газа до и после скачка уплотнения связаны соотношениям называемым уравнением ударной адиабаты: (2) Для прямого скачка:
Отношение давлений: (3) Отношение плотностей (4) Отношение температур: (5)
Cущественной особенностью параметров потока газа при сверхзвуковом течении является то, что при неограниченном возрастании давления в скачке уплотнения ( отношение температур и давлений возрастают безгранично, а отношение плотностей имеет определенный предел, значение которого определяется выражением: (6) Например, для воздуха (к=1.4) Сn1 Ct1 Сn2 Ct2
Косой скачок- фронт скачка уплотнения расположен по углом, отличном от 90о к вектору скорости потока. Скорость С1- до косого скачка и С2- после косого скачка можно представить составляющими- нормальными к плоскости скачка Cn1 и Cn2 и касательными к ней: Ct1 и Сt2.
С1- вектор скорости потока перед скачком уплотнения С2- вектор скорости потока после скачка уплотнения α- угол наклона фронта скачка к вектору скорости невозмущенного потока ω- угол поворота вектора скорости после скачка уплотнения
- угол между вектором скорости и фронтом скачка Основная задача о косом скачке- установление связи между параметрами до и после скачка и определение потерь, возникающих при переходе через скачок. Используя закон сохранения массы- уравнение неразрывности, получим: Используя закон сохранения импульсов- уравнение изменения количества движения, получим: - касательные составляющие скоростей до и после скачка уплотнения одинаковы. Используя закон сохранения энергии- уравнение Бернулли, можно найти взаимосвязь скоростей до и после скачка уплотнения: Или:
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|