Поток вектора магнитной индукции. Теорема Гаусса для вектора индукции магнитного поля. Потокосцепление
Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величина, которая равна Общий магнитный поток, сцепляющийся со всеми витками катушки, называется потокосцеплением и численно равен сумме потоков, сцепляющихся с отдельными витками
28 Работа по перемещению в магнитном поле проводника и контура с током: Таким образом, работа по перемещению проводника с током в МП, равна произведению силы тока на магнитный поток, пересеченный движущимся проводником:
Работа по перемещению замкнутого контура с током в МП равна произведению силы тока в контуре на приращение магнитного потока, сцепленного с контуром. A=I ∆Ф
29.Магнитные моменты электронов и атомов. Ларморова прецессия. Гиромагнитное отношение. Диапарамагнетизм: Гиромагни́тное отноше́ние (магнитомехани́ческое отноше́ние) — отношение дипольного магнитного момента элементарной частицы (или системы элементарных частиц) к её механическому моменту. В системе СИ единицей измерения гиромагнитного отношения является с·А·кг−1 = с−1·Тл−1. Часто подразумевается, что гиромагнитное отношение измеряется в единицах q /2 mc, где с — скорость света, q и m — заряд и масса частицы, соответственно. В этом случае оно выражается безразмерной величиной.
Диамагнетизм (от греч. dia – расхождение и магнетизм) - свойство веществ намагничиваться навстречу приложенному магнитному полю. Диамагнетиками называются вещества, магнитные моменты атомов которых в отсутствии внешнего поля равны нулю, т.к. магнитные моменты всех электронов атома взаимно скомпенсированы (например инертные газы, водород, азот, NaCl и др.). Парамагнетизм (от греч. para – возле, рядом и магнетизм) - свойство веществ во внешнем магнитном поле намагничиваться в направлении этого поля, поэтому внутри парамагнетика к действию внешнего поля прибавляется действие наведенного внутреннего поля. Парамагнетиками называются вещества, атомы которых имеют, в отсутствие внешнего магнитного поля, отличный от нуля магнитный момент . Следовательно: . Из этого выражения следует, что за малый единичный промежуток времени приращение момента импульса перпендикулярно плоскости проходящей через и (рис.179). Из рисунка видно, что вектор момента импульса, а вместе с ним и ось орбиты описывают конус, ось которого направлена вдоль вектора магнитной индукции. Такое движение называется прецессией. Следовательно, под воздействием магнитного поля происходит прецессия электронной орбиты – прецессия Лармора (рис.180). Сравним полученное выражение с уравнением движения точки тела, вращающегося с угловой скоростью : (рис.181). Это сравнение показывает, что выражение для скорости
РИС.178 РИС.179 РИС.180 РИС.181 изменения момента импульса, можно интерпретировать как вращение вектора момента импульса с угловой скоростью: , которая называется ларморовой частотой и характеризует дополнительную угловую скорость электрона.
30. Магнитное поле в веществе. Намагниченность. Закон полного тока для магнитного поля в ве-ве: Под воздействием магнитного поля всякое вещество способно приобретать магнитный момент (намагничиваться), т.е. является магнетиком. Намагниченное вещество создает магнитное поле , которое накладывается на внешнее поле . Оба поля в сумме дают результирующее поле . Степень намагничивания магнетика характеризуется магнитным моментом единицы объема. Эту величину называют намагниченность = * мера намагнич. в-ва. I=ХH;X -хи восприимчивость [ X]=1; H -напряженность магн. поля; I-намагниченность [I]=A/м где – магнитный момент отдельной молекулы (молекулярного тока). Суммирование производится по всем молекулам, заключенным в объеме – физически бесконечно малом объеме в окрестности данной точки (но много больше объема молекулы); - средний магнитный момент одного молекулярного тока, - их концентрация. Намагниченность принято связывать не с магнитной индукцией, а с напряженностью магнитного поля . Ограничимся пока рассмотрением магнетиков, для которых зависимость между и имеет линейный характер: = * где - магнитная восприимчивость, безразмерная величина, характерная для каждого данного магнетика. Обозначим где – напряженность магнитного поля. Эта величина не имеет особого физического смысла, но приносит пользу. С учетом введенного понятия напряженности получаем теорему о циркуляции вектора (закон полного тока для магнитного поля в веществе) Циркуляция вектора напряженности магнитного поля по некоторому контуру равна алгебраической сумме макротоков, охватываемых этим контуром.
Из полученных условий для составляющих векторов В и Н следует, что линии этих векторов испытывают излом (преломляются). Как и в случае диэлектриков, можно найти закон преломления линий В (а значит, и линий Н): Из этой формулы следует, что, входя в магнетик с большей магнитной проницаемостью, линии В и Н удаляются от нормали.
31. Ферромагнетизм. Обменные силы. Магнитный гестерезис. Температура Кюри. Антиферромагнетики: Ферромагнетики - вещества, характеризуются наличием областей спонтанной намагниченности. Ферромагнетик — такое вещество, которое, при температуре ниже точки Кюри, способно обладать намагниченностью в отсутствие внешнего магнитного поля. Свойства: Магнитная восприимчивость ферромагнетиков положительна и значительно больше единицы. При не слишком высоких температурах ферромагнетики обладают самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий. Для ферромагнетиков характерно явление гистерезиса. Ферромагнетики притягиваются магнитом. -- Магнитный гистерезис — явление зависимости вектора намагничивания и вектора напряжённости магнитного поля в веществе не только от приложенного внешнего поля, но и от предыстории данного образца. Магнитный гистерезис обычно проявляется в ферромагнетиках — Fe, Co, Ni и сплавах на их основе. Именно магнитным гистерезисом объясняется существование постоянных магнитов. -- температу́ра Кюри́, — температура фазового перехода II рода, связанного со скачкообразным изменением свойств симметрии вещества (например, магнитной — в ферромагнетиках, электрической — в сегнетоэлектриках, кристаллохимической — в упорядоченных сплавах)
32 Явление электромагнитной индукции. Закон электромагнитной индукции Фарадея: Явление электромагнитной индукции заключается в том, что в замкнутом проводящем контуре при изменении потока магнитной индукции, охватываемого этим контуром, возникает электрический ток, получивший название индукционного.
Закон Фарадея может быть выведен из закона сохранения энергии. Возьмем проводник с током I, помещенный в однородное магнитное поле, которое перпендикулярное плоскости контура, и может свободно двигаться. Под действием силы Ампера F, направление которой показано на рисунке, проводник передвигается на отрезок dx. Значит, сила Ампера производит работу dA=IdФ, где dФ — пересеченный проводником магнитный поток. Используя закон сохранения энергии, работа источника тока за время dt (ξIdt) будет складываться из работы на теплоту Джоуля-Ленца (I2Rdt) и работы по перемещению проводника в магнитном поле (IdФ): где R — полное сопротивление контура. Значит Закон Фарадея: Значение индукционного тока не зависит от способа изменения потока магнитной индукции, а определяется лишь скоростью его изменения. 33. Вихревые токи. Индуктивность контура. Самоиндукция Под действием этих э. д. с. в массе металлической детали протекают вихревые токи (токи Фуко), которые замыкаются в массе, образуя вихревые контуры токов. Вихревыми токами (также токами Фуко) называются электрические токи, возникающие вследствие электромагнитной индукции в проводящей среде (обычно в металле) при изменении пронизывающего ее магнитного потока. Вихревые токи порождают свои собственные магнитные потоки, которые, по правилу Ленца, противодействуют магнитному потоку катушки и ослабляют его. Кроме того, они вызывают нагрев сердечника, что является бесполезной тратой энергии.
Поверхностный эффект, скин-эффект — эффект уменьшения амплитуды электромагнитных волн по мере их проникновения вглубь проводящей среды. В результате этого эффекта, например, переменный ток высокой частоты при протекании по проводнику распределяется не равномерно по сечению, а преимущественно в поверхностном слое. индукти́вность (или коэффициент самоиндукции) — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и полным магнитным потоком, называемым также потокосцеплением, создаваемым этим током через поверхность[1], краем которой является этот контур[2][3][4]. Самоиндукция — это явление возникновения ЭДС индукции в проводящем контуре при изменении протекающего через контур тока. При изменении тока в контуре пропорционально меняется и магнитный поток через поверхность, ограниченную этим контуром.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|