Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Спецификация эконометрической модели: способы и диагностика отбора экзогенных переменных. Тесты Рамсея и Амемья.




Спецификация модели множественной линейной регрессии включает проверку:

1. правильного выбора экзогенных переменных.

2. корректного выбора формы зависимости мду эндо- и экзогенной переменными.

Для решения 1 задачи различают пропущенные и избыточные экзогенные переменные

Пропущенные переменные – существенные факторы, которые не были включены в эконометрическую модель по ошибке. Опасность наличия пропущенных переменных заключается в смещении оценок параметров при включенных переменных. Признак, по которому определяют пропущенную переменную: Знак “+” у произведения оценки параметра при подозреваемой пропущенной переменной и коэффициента корреляции этой переменной с другими переменными, включенными в модель.

Истинная модель:

Выбранная модель с пропуском переменной :

, где

Тогда, применяя МНК для оценки усеченной модели получаем формулу смещения оценки ^

Экзогенную переменную относят к избыточным, если она по ошибке включена в эконометрическую модель. Включение избыточной переменной оказывает влияние на уменьшение точности (увеличение дисперсии) оценок параметров модели, что, в свою очередь, вызывает уменьшение t-статистик и коэффициента детерминации.

Если – избыточная, то коэффициент корреляции , тогда будет уменьшаться, а в соответствии с формулой будет возрастать.

Замещающие переменные – обычно бывает полезно вместо пропущенной переменной, которую трудно измерить, использовать некоторый её заменитель.

4 основных качественных правила спецификации экономической модели:

1. Опираясь на эконометрическую теорию, следует ответить на вопрос: «Является ли переменная существенной в модели зависимости с эндогенной переменной?».

2. Осуществить проверку значимого отличия от нуля t -статистик.

3. Осуществить проверку, насколько значимо изменяется коэффициент детерминации при добавлении некоторой переменной в модель.

4. Существенно ли изменяются оценки других переменных после добавления новой переменной в модель.

Кроме отмеченных правил спецификации модели, наиболее из-вестны два следующих количественных критерия спецификации:

Критерий Рамсея (Ramsey):

RESET-тест Рамсея - это обобщенный тест на наличие следующих ошибок спецификации модели линейной регрессии:

  • наличие пропущенных переменных. Регрессия содержит не все объясняющие переменные;
  • неверная функциональная форма. Некоторые или все переменные должны быть преобразованы с помощью логарифмической, степенной, обратной или какой-либо другой функции;
  • корреляция между фактором Х и случайной составляющей модели, которая может быть вызвана ошибками измерения факторов, рассмотрением систем уравнений или другими причинами.

Тест Рамсея позволяет проверить, стоит ли начинать поиск дополнительной переменной для включения в уравнение

1. Оценивается уравнение регрессии

2. Вычисляются степени оценок зависимой переменной

3. Оценивается уравнение регрессии с этими степенями

4. Проводится оценка улучшения по F-критерию

Ошибки такого рода приводят к смещению среднего остатков регрессионной модели.

1. Оценивают зависимость в соответствии с выбранной моделью по МНК:

2. Анализируют вид функциональной зависимости остатков и её номинальное приближение включают в модель.

3. Например, с учетом 2) вычисляют величины , конструируют новую модель:

и применяют для ее оценивания по МНК.

4) Сравнивают качество модели по отношению к модели с помощью F -критерия:

Если где M – число дополнительных переменных, включенных в модель (M =3), k – число экзогенных переменных в то модель плохо специфицирована.

Недостаток: он указывает только на наличие ошибочной спец-ции модели, но не выявляет, сколько и какого рода переменную нужно добавить в модель.

Критерий Амемья (Amemiya):

Решающей функцией F-критерия служит:

Модель, для которой значение AF меньше, является лучше специфицированной.

Этот критерий минимизирует число экзогенных переменных.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...