Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Глава 1. Делимость в кольце чисел Гаусса.

Вятский государственный гуманитарный университет

 

Математический факультет

 

Кафедра математического анализа и методики
преподавания математики

 

Выпускная квалификационная работа

На тему: Кольцо целых чисел Гаусса.

 

Выполнил:

студент V курса

математического факультета

Гнусов В.В.

___________________________

 

Научный руководитель:

старший преподаватель кафедры

алгебры и геометрии

Семенов А.Н..

___________________________

 

Рецензент:

кандидат физ.-мат. наук, доцент

кафедры алгебры и геометрии

Ковязина Е.М.

___________________________

 

Допущена к защите в ГАК

Зав. кафедрой________________                        Вечтомов Е.М.

                                                               «»________________

Декан факультета___________________           Варанкина В.И.

                                                                                            «»________________

 

 

Киров 2005

Содержание.

Введение. 2

ГЛАВА 1. ДЕЛИМОСТЬ В КОЛЬЦЕ ЧИСЕЛ ГАУССА. 3

1.1 ОБРАТИМЫЕ И СОЮЗНЫЕ ЭЛЕМЕНТЫ. 4

1.2 ДЕЛЕНИЕ С ОСТАТКОМ. 5

1.3 НОД. АЛГОРИТМ ЕВКЛИДА. 6

1.4 ОСНОВНАЯ ТЕОРЕМА АРИФМЕТИКИ. 9

ГЛАВА 2. ПРОСТЫЕ ЧИСЛА ГАУССА. 12

ГЛАВА 3. ПРИМЕНЕНИЕ ЧИСЕЛ ГАУССА. 17

Заключение. 23


Введение.

Кольцо целых комплексных чисел  было открыто Карлом Гауссом и названо в его честь гауссовым.

К. Гаусс пришел к мысли о возможности и необходимости расширения понятия целого числа в связи с поиском алгоритмов решения сравнений второй степени. Он перенес понятие целого числа на числа вида , где  — произвольные целые числа, а  — является корнем уравнения  На данном множестве К. Гаусс впервые построил теорию делимости, аналогичную теории делимости целых чисел. Он обосновал справедливость основных свойств делимости; показал, что в кольце комплексных чисел существует только четыре обратимых элемента: ; доказал справедливость теоремы о делении с остатком, теоремы о единственности разложения на простые множители; показал какие простые натуральные числа останутся простыми и в кольце ; выяснил природу простых целых комплексных чисел.

Развитая К. Гауссом теория, описанная в его труде «Арифметические исследования», явилась фундаментальным открытием для теории чисел и алгебры.

В выпускной работе были поставлены следующие цели:

1. Развить теорию делимости в кольце чисел Гаусса.

2. Выяснить природу простых гауссовых чисел.

3. Показать применение гауссовых чисел при решении обычных диофантовых задач.


ГЛАВА 1. ДЕЛИМОСТЬ В КОЛЬЦЕ ЧИСЕЛ ГАУССА.

 

Рассмотрим множество комплексных чисел. По аналогии с множеством действительных чисел в нем можно выделить некоторое подмножество целых чисел. Множество чисел вида , где   назовем целыми комплексными числами или гауссовыми числами. Нетрудно проверить, что для этого множества выполняются аксиомы кольца. Таким образом, это множество комплексных чисел является кольцом и называется кольцом целых чисел Гаусса. Обозначим его как , так как оно является расширением кольца  элементом: .

Поскольку кольцо гауссовых чисел является подмножеством комплексных чисел, то для него справедливы некоторые определения и свойства комплексных чисел. Так, например, каждому гауссовому числу  соответствует вектор с началом в точке  и с концом в . Следовательно, модуль гауссова числа  есть . Заметим, что в рассматриваемом множестве, подмодульное выражение всегда есть число неотрицательное целое. Поэтому в некоторых случаях удобнее пользоваться нормой, то есть квадратом модуля. Таким образом . Можно выделить следующие свойства нормы. Для любых гауссовых чисел  справедливо:

                                                                                 (1)

                                                                                       (2)

                                                                      (3)

                                                                      (4)

                                                                              (5)

Здесь и далее  — множество натуральных чисел, то есть целых положительных чисел.

Справедливость данных свойств тривиальным образом проверяется с помощью модуля. Попутно заметим, что (2), (3), (5) справедливы и для любых комплексных чисел.

Кольцо гауссовых чисел — это коммутативное кольцо без делителей 0, так как оно является подкольцом поля комплексных чисел. Отсюда следует мультипликативная сократимость кольца , то есть

                                                                     (6)

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...