Глава 3. Применение чисел Гаусса.
Утверждение. Произведение чисел представимых в виде суммы двух квадратов также представимо в виде суммы двух квадратов. Доказательство. Докажем этот факт двумя способами, с помощью чисел Гаусса, и не используя гауссовы числа. 1. Пусть , — натуральные числа представимые в виде суммы двух квадратов. Тогда , и . Рассмотрим произведение , то есть представили в виде произведения двух сопряженных гауссовых чисел, которое представляется в виде суммы двух квадратов натуральных чисел. 2. Пусть , . Тогда
. Ч.Т.Д.
Утверждение. Если , где — простое натуральное вида , то и . Доказательство. Из условия следует, что и при этом — простое гауссово. Тогда по лемме Евклида на делится один из множителей. Пусть , тогда по лемме 10 имеем, что и . Ч.Т.Д. Опишем общий вид натуральных чисел представимых в виде суммы двух квадратов. Рождественская теорема Ферма или теорема Ферма — Эйлера. Ненулевое натуральное число представимо в виде суммы двух квадратов тогда, и только тогда, когда в каноническом разложении все простые множители вида входят в четных степенях. Доказательство. Заметим, что 2 и все простые числа вида представимы в виде суммы двух квадратов. Пусть в каноническом разложении числа есть простые множители вида , входящие в нечетной степени. Занесем в скобки все множители представимые в виде суммы двух квадратов, тогда останутся множители вида , причем все в первой степени. Покажем, что произведение таких множителей не представимо в виде суммы двух квадратов. Действительно, если допустить, что , то имеем, что должен делить один из множителей или , но если делит одно из этих гауссовых чисел, то оно обязано и делить другое, как сопряженное к нему. То есть и , но тогда должно быть во второй степени, а оно в первой. Следовательно, произведение любого числа простых множителей вида первой степени не представимо в виде суммы двух квадратов. Значит наше предположение не верно и все простые множители вида в каноническом разложении числа входят в четных степенях.
Ч.Т.Д.
Задача 1. Посмотрим применение данной теории на примере решения диафантова уравнения. Решить в целых числах . Заметим, что правая часть представима в виде произведения сопряженных гауссовых чисел. То есть . Пусть делится на некоторое простое гауссово число , и на него делится и сопряженное, то есть . Если рассмотреть разность этих гауссовых чисел, которая должна делиться на , то получим, что должно делить 4. Но , то есть союзно с . Все простые множители в разложении числа входят в степени кратной трем, а множители вида , в степени кратной шести, так как простое гауссово число получается из разложения на простые гауссовы 2, но , поэтому . Сколько раз встречается в разложении на простые множители числа , столько же раз и встречается в разложении на простые множители числа . В силу того, что делится на тогда и только тогда, когда делится на . Но союзно с . То есть они распределятся поровну, значит, будут входить в разложения этих чисел в степенях кратной трем. Все остальные простые множители, входящие в разложение числа , будут входить только либо в разложение числа , либо числа . Значит, в разложении на простые гауссовы множители числа все множители будут входить в степени кратной трем. Следовательно число есть куб. Таким образом имеем, что . Отсюда получаем, что , то есть должно быть делителем 2. Значит , или . Откуда получаем четыре удовлетворяющие нам варианта. 1. , . Откуда находим, что , . 2. , . Отсюда , . 3. , . Отсюда , .
4. , . Отсюда , . Ответ: , , , .
Задача 2. Решить в целых числах . Представим левую часть как произведению двух гауссовых чисел, то есть . Разложим каждое из чисел на простые гауссовы множители. Среди простых будут такие, которые есть в разложении и . Сгруппируем все такие множители и обозначим полученное произведение . Тогда в разложении останутся только те множители, которых нет в разложении . Все простые гауссовы множители, входящие в разложение , входят в четной степени. Те которые не вошли в будут присутствовать либо только в , либо в . Таким образом, число является квадратом. То есть . Приравнивая действительные и мнимые части, получим, что , , . Ответ: , , .
Задача 3. Количество представлений натурального числа в виде суммы двух квадратов. Задача равносильна задаче о представлении данного натурального числа в виде нормы некоторого числа Гаусса. Пусть — число Гаусса, норма которого равна . Разложим на простые натуральные множители. , где — простые числа вида , а — простые числа вида . Тогда, чтобы было представимо в виде суммы двух квадратов, необходимо, чтобы все были четными. Разложим на простые гауссовы множители число , тогда , где — простые гауссовы числа, на которые раскладываются . Сравнение нормы с числом приводит к следующим соотношениям, необходимым и достаточным для того, чтобы : . Число представлений подсчитывается из общего числа возможностей для выбора показателей . Для показателей имеется возможность, так как число можно разбить на два неотрицательных слагаемых способом: Для пары показателей имеется возможность и так далее. Комбинируя всевозможными способами допустимые значения для показателей мы получим всего различных значений для произведения простых гауссовых чисел, с нормой вида или 2. Показатели выбираются однозначно. Наконец, обратимому можно придавать четыре значения: .Таким образом, для числа имеется всего возможностей, и следовательно, число в виде нормы гауссова числа , то есть в виде может быть представлено способами. При этом подсчете различными считаются все решения уравнения . Однако некоторые решения можно рассматривать, как определяющие одно и то же представление в виде суммы двух квадратов. Так, если — решения уравнения , то можно указать еще семь решений, определяющих то же самое представление числа в виде суммы двух квадратов: .
Очевидно, что из восьми решений, соответствующих одному представлению, может остаться только четыре различных в том и только в том случае, если или , или . Подобные представления возможны, если полный квадрат или удвоенный полный квадрат, и при том такое представление может быть только одно: . Таким образом, имеем следующие формулы: , если не все четные и , если все четные. Заключение. В данной работе была изучена теория делимости в кольце целых чисел Гаусса, а также природа простых гауссовых чисел. Эти вопросы изложены в первых двух главах. В третей главе рассмотрены применения чисел Гаусса к решению известных классических задач, таких как: · Вопрос о возможности представления натурального числа в виде суммы двух квадратов; · Задача нахождения количества представлений натурального числа в виде суммы двух квадратов; · Нахождение общих решений неопределенного уравнения Пифагора; а также к решению диафантова уравнения. Также отмечу, что работа была выполнена без использования дополнительной литературы.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|