Обратимые и союзные элементы.
Посмотрим, какие гауссовы числа будут обратимыми. Нейтральным по умножению является
. Если гауссово число
обратимо, то, по определению, существует
такое, что
. Переходя к нормам, согласно свойству 3, получим
. Но эти нормы натуральны, следовательно
. Значит, по свойству 4,
. Обратно, все элементы данного множества обратимы, поскольку
. Следовательно, обратимыми будут числа с нормой равной единице, то есть
,
.
Как видно не все гауссовы числа будут обратимы. Поэтому интересно рассмотреть вопрос делимости. Как обычно, мы говорим, что
делится на
, если существует
такое, что
.Для любых гауссовых чисел
, а также обратимых
справедливы свойства.
(7)
(8)
(9)
(10)
, где
(11)
(12)
Легко проверяются (8), (9), (11), (12). Справедливость (7) следует из (2), а (10) следует из (6). В силу свойства (9), элементы множества
ведут себя по отношению к делимости точно так же как и
, и называются союзными с
. Поэтому естественно рассматривать делимость гауссовых чисел с точностью до союзности. Геометрически на комплексной плоскости союзные числа будут отличаться друг от друга поворотом на угол кратный
.
ДЕЛЕНИЕ С ОСТАТКОМ.
Пусть надо поделить
на
, но невозможно произвести деление нацело. Мы должны получить
, и при этом
должно быть «мало». Тогда покажем, чту брать в качестве неполного частного при делении с остатком во множестве гауссовых чисел.
Лемма 1. О делении с остатком.
В кольце
возможно деление с остатком, при котором остаток меньше делителя по норме. Точнее, для любых
и
найдется
такое, что
. В качестве
можно взять ближайшее к комплексному числу
гауссово число.
Доказательство.
Разделим
на
во множестве комплексных чисел. Это возможно, так как множество комплексных чисел является полем. Пусть
. Округлим действительные числа
и
до целых, получим соответственно
и
. Положим
. Тогда
.
Умножая сейчас обе части неравенства на
получим, в силу мультипликативности нормы комплексных чисел, что
. Таким образом, в качестве неполного частного можно взять гауссово число
, которое как нетрудно видеть, является ближайшим к
.
Ч.Т.Д.
НОД. АЛГОРИТМ ЕВКЛИДА.
Мы пользуемся обычным для колец определением наибольшего общего делителя. НОД’ом двух гауссовых чисел
называется такой их общий делитель, который делится на любой другой их общий делитель.
Как и во множестве целых чисел, во множестве гауссовых чисел для нахождения НОД пользуются алгоритмом Евклида.
Пусть
и
данные гауссовы числа, причем
. Разделим с остатком
на
. Если остаток будет отличен от 0, то разделим
на этот остаток, и будем продолжать последовательное деление остатков до тех пор, пока оно будет возможно. Получим цепочку равенств:
, где 
, где 
, где 
……………………….
, где 

Эта цепочка не может продолжаться бесконечно, так как имеем убывающую последовательность норм, а нормы — неотрицательные целые числа.
Теорема 2. О существовании НОД.
В алгоритме Евклида, примененному к числам Гаусса
и
последний ненулевой остаток есть НОД(
).
Доказательство.
Докажем, что в алгоритме Евклида действительно получаем НОД.
1.Рассмотрим равенства снизу вверх.
Из последнего равенства видно, что
.Следовательно,
как сумма чисел делящихся на
. Так как
и
, то следующая строчка даст
. И так далее. Таким образом, видно, что
и
. То есть
это общий делитель чисел
и
.
Покажем, что это наибольший общий делитель, то есть
делится на любой другой их общий делитель.
2. Рассмотрим равенства сверху вниз.
Пусть
— произвольный общий делитель чисел
и
. Тогда
, как разность чисел делящихся на
, действительно из первого равенства
. Из второго равенства получим, что
. Таким образом, представляя в каждом равенстве остаток как разность чисел делящихся на
, мы из предпоследнего равенства получим, что
делится на
.
Ч.Т.Д.

Воспользуйтесь поиском по сайту: