Закон широтной зональности
Под широтной (географической, ландшафтной) зональностью подразумевается закономерное изменение различных процессов, явлений, отдельных географических компонентов и их сочетаний (систем, комплексов) от экватора к полюсам. Зональность в элементарной форме была известна еще ученым Древней Греции, но первые шаги в научной разработке теории мировой зональности связаны с именем А. Гумбольдта, который в начале XIX в. обосновал представление о климатических и фитогеографических зонах Земли. В самом конце XIX в. В. В.Докучаев возвел широтную (по его терминологии горизонтальную) зональность в ранг мирового закона. Для существования широтной зональности достаточно двух условий — наличия потока солнечной радиации и шарообразности Земли. Теоретически поступление этого потока к земной поверхности убывает от экватора к полюсам пропорционально косинусу широты (рис. 3). Однако на фактическую величину инсоляции, поступающей на земную поверхность, влияют и некоторые другие факторы, имеющие также астрономическую природу, в том числе расстояние от Земли до Солнца. По мере удаления от Солнца поток его лучей становится слабее, и на достаточно дальнем расстоянии разница между полярными и экваториальными широтами теряет свое значение; так, на поверхности планеты Плутон расчетная температура близка к -230 °С. При слишком большом приближении к Солнцу, напротив, во всех частях планеты оказывается слишком жарко. В обоих крайних случаях невозможно существование воды в жидкой фазе, жизни. Земля, таким образом, наиболее «удачно» расположена по отношению к Солнцу. Наклон земной оси к плоскости эклиптики (под углом около 66,5°) определяет неравномерное поступление солнечной радиации по сезонам, что существенно усложняет зональное распреде-
170
ление тепла и обостряет зональные контрасты. Если бы земная ось была перпендикулярна плоскости эклиптики, то каждая параллель получала бы в течение всего года почти одинаковое количество солнечного тепла и на Земле практически не было бы сезонной смены явлений. Суточное вращение Земли, обусловливающее отклонение движущихся тел, в том числе воздушных масс, вправо в Северном полушарии и влево — в Южном, вносит дополнительные усложнения в схему зональности. Масса Земли также влияет на характер зональности, хотя и косвенно: она позволяет планете (в отличие, например, от «лег- 171 кой» Луны) удерживать атмосферу, которая служит важным фактором трансформации и перераспределения солнечной энергии. При однородном вещественном составе и отсутствии неровностей количество солнечной радиации изменялось бы на земной поверхности строго по широте и было бы одинаковым на одной и той же параллели, несмотря на осложняющее влияние перечисленных астрономических факторов. Но в сложной и неоднородной среде эпигеосферы поток солнечной радиации перераспределяется и претерпевает разнообразные трансформации, что ведет к нарушению его математически правильной зональности. Поскольку солнечная энергия служит практически единственным источником физических, химических и биологических процессов, лежащих в основе функционирования географических компонентов, в этих компонентах неизбежно должна проявляться широтная зональность. Однако проявления эти далеко не однозначны, и географический механизм зональности оказывается достаточно сложным.
Уже проходя через толщу атмосферы, солнечные лучи частично отражаются, а также поглощаются облаками. В силу этого максимальная радиация, приходящая к земной поверхности, наблюдается не на экваторе, а в поясах обоих полушарий между 20-й и 30-й параллелями, где атмосфера наиболее прозрачна для солнечных лучей (рис. 3). Над сушей контрасты прозрачности атмосферы более значительны, чем над Океаном, что находит отражение в рисунке соответствующих кривых. Кривые широтного распределения радиационного баланса несколько более сглажены, но хорошо заметно, что поверхность Океана характеризуется более высокими цифрами, чем суша. К важнейшим следствиям ши-ротно-зонального распределения солнечной энергии относятся зональность воздушных масс, циркуляции атмосферы и влагооборота. Под влиянием неравномерного нагрева, а также испарения с подстилающей поверхности формируются четыре основных зональных типа воздушных масс: экваториальные (теплые и влажные), тропические (теплые и сухие), бореальные, или массы умеренных широт (прохладные и влажные), и арктические, а в Южном полушарии антарктические (холодные и относительно сухие). Различие в плотности воздушных масс вызывает нарушения термодинамического равновесия в тропосфере и механическое перемещение (циркуляцию) воздушных масс. Теоретически (без учета влияния вращения Земли вокруг оси) воздушные потоки от нагретых приэкваториальных широт должны были подниматься вверх и растекаться к полюсам, а оттуда холодный и более тяжелый воздух возвращался бы в приземном слое к экватору. Но отклоняющее действие вращения планеты (сила Кориолиса) вносит в эту схему существенные поправки. В результате в тропосфере образуется несколько циркуляционных зон или поясов. Для экватори- 172 ального пояса характерны низкое атмосферное давление, штили, восходящие потоки воздуха, для тропических — высокое давление, ветры с восточной составляющей (пассаты), для умеренных — пониженное давление, западные ветры, для полярных — пониженное давление, ветры с восточной составляющей. Летом (для соответствующего полушария) вся система циркуляции атмосферы смещается к «своему» полюсу, а зимой — к экватору. Поэтому в каждом полушарии образуются три переходных пояса — субэкваториальный, субтропический и субарктический (субантарктический), в которых типы воздушных масс сменяются по сезонам. Благодаря циркуляции атмосферы зональные температурные различия на земной поверхности несколько сглаживаются, однако в Северном полушарии, где площадь суши значительно больше, чем в Южном, максимум теплообеспеченности сдвинут к северу, примерно до 10 — 20° с. ш. С древнейших времен принято различать на Земле пять тепловых поясов: по два холодных и умеренных и один жаркий. Однако такое деление имеет чисто условный характер, оно крайне схематично и географическое значение его невелико. Континуальный характер изменения температуры воздуха у земной поверхности затрудняет разграничение тепловых поясов. Тем не менее, используя в качестве комплексного индикатора широтно-зональную смену основных типов ландшафтов, можно предложить следующий ряд тепловых поясов, сменяющих друг друга от полюсов к экватору:
1) полярные (арктический и антарктический); 2) субполярные (субарктический и субантарктический); 3) бореальные (холодно-умеренные); 4) суббореальные (тепло-умеренные); 5) пред субтропические; 6) субтропические; 7) тропические; 8) субэкваториальные; 9) экваториальный. С зональностью циркуляции атмосферы тесно связана зональность влагооборота и увлажнения. В распределении осадков по широте наблюдается своеобразная ритмичность: два максимума (главный — на экваторе и второстепенный в бореальных широтах) и два минимума (в тропических и полярных широтах) (рис. 4). Количество осадков, как известно, еще не определяет условий увлажнения и влагообеспеченности ландшафтов. Для этого необходимо соотнести количество ежегодно выпадающих атмосферных осадков с тем количеством, которое необходимо для оптимального функционирования природного комплекса. Наилучшим интегральным показателем потребности во влаге служит величина испаряемости, т. е. предельного испарения, теоретически возможного при данных климатических (и прежде всего температур-
ных) условиях. Г. Н. Высоцкий впервые использовал еще в 1905 г. указанное соотношение для характеристики природных зон Европейской России. Впоследствии Н. Н. Иванов независимо от Г. Н. Высоцкого ввел в науку показатель, получивший известность как коэффициент увлажнения Высоцкого — Иванова: К=г/Е, где г — годовая сумма осадков; Е — годовая величина испаряемости1.
1 Для сравнительной характеристики атмосферного увлажнения используется также индекс сухости RfLr, предложенный М.И.Будыко и А. А. Григорьевым: где R — годовой радиационный баланс; L — скрытая теплота испарения; г — годовая сумма осадков. По своему физическому смыслу этот индекс близок к показателю, обратному К Высоцкого—Иванова. Однако его применение дает менее точные результаты. На рис. 4 видно, что широтные изменения осадков и испаряемости не совпадают и в значительной степени имеют даже противоположный характер. В результате на широтной кривой К в каждом полушарии (для суши) выделяются две критические точки, где К переходит через 1. Величина К- 1 соответствует оптимуму атмосферного увлажнения; при К> 1 увлажнение становится избыточным, а при К< 1 — недостаточным. Таким образом, на поверхности суши в самом общем виде можно выделить экваториальный пояс избыточного увлажнения, два симметрично расположенных по обе стороны от экватора пояса недостаточного увлажнения в низких и средних широтах и два пояса избыточного увлажнения в высоких широтах (см. рис. 4). Разумеется, это сильно генерализованная, осредненная картина, не отражающая, как мы увидим в дальнейшем, постепенных переходов между поясами и существенных долготных различий внутри них. Интенсивность многих физико-географических процессов зависит от соотношения теготообеспеченности и увлажнения. Однако нетрудно заметить, что широтно-зональные изменения температурных условий и увлажнения имеют разную направленность. Если запасы солнечного тепла в общем нарастают от полюсов к экватору (хотя максимум несколько смещен в тропические широты), то кривая увлажнения имеет резко выраженный волнообразный характер. Не касаясь пока способов количественной оценки соотношения теплообеспеченности и увлажнения, наметим самые общие закономерности изменения этого соотношения по широте. От полюсов примерно до 50-й параллели увеличение теплообеспеченности происходит в условиях постоянного избытка влаги. Далее с приближением к экватору увеличение запасов тепла сопровождается прогрессирующим усилением сухости, что приводит к частой смене ландшафтных зон, наибольшему разнообразию и контрастности ландшафтов. И лишь в относительно неширокой полосе по обе стороны от экватора наблюдается сочетание больших запасов тепла с обильным увлажнением.
Для оценки влияния климата на зональность других компонентов ландшафта и природного комплекса в целом важно учитывать не только средние годовые величины показателей тепло- и влаго-обеспеченности, но и их режим, т.е. внутригодовые изменения. Так, для умеренных широт характерна сезонная контрастность термических условий при относительно равномерном внутриго-довом распределении осадков; в субэкваториальном поясе при небольших сезонных различиях в температурных условиях резко выражен контраст между сухим и влажным сезонами и т.д. Климатическая зональность находит отражение во всех других географических явлениях — в процессах стока и гидрологическом режиме, в процессах заболачивания и формирования грунтовых 175 вод, образования коры выветривания и почв, в миграции химических элементов, а также в органическом мире. Зональность отчетливо проявляется и в поверхностной толще Мирового океана. Особенно яркое, в известной степени интегральное выражение географическая зональность находит в растительном покрове и почвах. Отдельно следует сказать о зональности рельефа и геологического фундамента ландшафта. В литературе можно встретить высказывания, будто эти компоненты не подчиняются закону зональности, т.е. азональны. Прежде всего надо заметить, что делить географические компоненты на зональные и азональные неправомерно, ибо в каждом из них, как мы увидим, проявляются влияния как зональных, так и азональных закономерностей. Рельеф земной поверхности формируется под воздействием так называемых эндогенных и экзогенных факторов. К первым относятся тектонические движения и вулканизм, имеющие азональную природу и создающие морфоструктурные черты рельефа. Экзогенные факторы связаны с прямым или косвенным участием солнечной энергии и атмосферной влаги и создаваемые ими скульптурные формы рельефа распределяются на Земле зонально. Достаточно напомнить о специфических формах ледникового рельефа Арктики и Антарктики, термокарстовых впадинах и буграх пучения Субарктики, оврагах, балках и просадочных западинах степной зоны, эоловых формах и бессточных солончаковых впадинах пустыни и т.д. В лесных ландшафтах мощный растительный покров сдерживает развитие эрозии и обусловливает преобладание «мягкого» слаборасчлененного рельефа. Интенсивность экзогенных геоморфологических процессов, например, эрозии, дефляции, кар-стообразования, существенно зависит от широтно-зональных условий. В строении земной коры также сочетаются азональные и зональные черты. Если изверженные породы имеют безусловно азональное происхождение, то осадочная толща формируется под непосредственным влиянием климата, жизнедеятельности организмов, почвообразования и не может не носить на себе печати зональности. На всем протяжении геологической истории осадкообразование (литогенез) неодинаково протекало в разных зонах. В Арктике и Антарктике, например, накапливался несортированный обломочный материал (морена), в тайге — торф, в пустынях — обломочные породы и соли. Для каждой конкретной геологической эпохи можно восстановить картину зон того времени, и каждой зоне будут присущи свои типы осадочных пород. Однако на протяжении геологической истории система ландшафтных зон претерпевала неоднократные изменения. Таким образом, на современную геологическую карту наложились результаты литогенеза 176 всех геологических периодов, когда зоны были совсем не такие, как сейчас. Отсюда внешняя пестрота этой карты и отсутствие видимых географических закономерностей. Из сказанного следует, что зональность нельзя рассматривать как некий простой отпечаток современного климата в земном пространстве. По существу, ландшафтные зоны — это пространственно-временные образования, они имеют свой возраст, свою историю и изменчивы как во времени, так и в пространстве. Современная ландшафтная структура эпигеосферы складывалась в основном в кайнозое. Наибольшей древностью отличается экваториальная зона, по мере удаления к полюсам зональность испытывает все большую изменчивость, и возраст современных зон уменьшается. Последняя существенная перестройка мировой системы зональности, захватившая в основном высокие и умеренные широты, связана с материковыми оледенениями четвертичного периода. Колебательные смещения зон продолжаются здесь и в послеледниковое время. В частности, за последние тысячелетия был по крайней мере один период, когда таежная зона местами продвинулась до северной окраины Евразии. Зона тундры в современных границах возникла лишь вслед за последующим отступанием тайги к югу. Причины подобных изменений положения зон связаны с ритмами космического происхождения. Действие закона зональности наиболее полно сказывается в сравнительно тонком контактном слое эпигеосферы, т.е. в собственно ландшафтной сфере. По мере удаления от поверхности суши и океана к внешним границам эпигеосферы влияние зональности ослабевает, но не исчезает окончательно. Косвенные проявления зональности наблюдаются на больших глубинах в литосфере, практически во всей стратисфере, т. е. толще осадочных пород, о связи которых с зональностью уже говорилось. Зональные различия в свойствах артезианских вод, их температуре, минерализации, химическом составе прослеживаются до глубины 1000 м и более; горизонт пресных подземных вод в зонах избыточного и достаточного увлажнения может достигать мощности 200— 300 и даже 500 м, тогда как в аридных зонах мощность этого горизонта незначительна или он вовсе отсутствует. На океаническом ложе зональность косвенно проявляется в характере донных илов, имеющих преимущественно органическое происхождение. Можно считать, что закон зональности распространяется на всю тропосферу, поскольку ее важнейшие свойства формируются под воздействием субаэральной поверхности континентов и Мирового океана. В отечественной географии долгое время недооценивалось значение закона зональности для жизни человека и общественного производства. Суждения В.В.Докучаева на эту тему расценива- 177 лись как преувеличение и проявление географического детерминизма. Территориальной дифференциации народонаселения и хозяйства присущи свои закономерности, которые не могут быть полностью сведены к действию природных факторов. Однако отрицать влияние последних на процессы, происходящие в человеческом обществе, было бы грубой методологической ошибкой, чреватой серьезными социально-экономическими последствиями, в чем нас убеждает весь исторический опыт и современная действительность. Различные аспекты проявления закона широтной зональности в сфере социально-экономических явлений подробнее рассматриваются в гл. 4. Закон зональности находит свое наиболее полное, комплексное выражение в зональной ландшафтной структуре Земли, т.е. в существовании системы ландшафтных зон. Систему ландшафтньгх зон не следует представлять себе в виде серии геометрически правильных сплошных полос. Еще В. В.Докучаев не мыслил себе зоны как идеальной формы пояса, строго разграниченные по параллелям. Он подчеркивал, что природа — не математика, и зональность — это лишь схема или закон. По мере дальнейшего исследования ландшафтных зон обнаружилось, что некоторые из них разорваны, одни зоны (например, зона широколиственных лесов) развиты только в периферических частях материков, другие (пустыни, степи), напротив, тяготеют к внутриконтинентальным районам; границы зон в большей или меньшей мере отклоняются от параллелей и местами приобретают направление, близкое к меридиональному; в горах широтные зоны как будто исчезают и замещаются высотными поясами. Подобные факты дали повод в 30-е гг. XX в. некоторым географам утверждать, будто широтная зональность — это вовсе не всеобщий закон, а лишь частный случай, характерный для больших равнин, и что ее научное и практическое значение преувеличено. В действительности же различного рода нарушения зональности не опровергают ее универсального значения, а лишь говорят о том, что она проявляется неодинаково в различных условиях. Всякий природный закон по-разному действует в различных условиях. Это касается и таких простейших физических констант, как точка замерзания воды или величина ускорения силы тяжести: они не нарушаются только в условиях лабораторного эксперимента. В эпигеосфере одновременно действует множество природных законов. Факты, на первый взгляд не укладывающиеся в теоретическую модель зональности с ее строго широтными сплошными зонами, свидетельствуют о том, что зональность — не единственная географическая закономерность и только ею невозможно объяснить всю сложную природу территориальной физико-географической дифференциации. 178 максимумы давления. В умеренных широтах Евразии различия в средних январских температурах воздуха на западной периферии материка и в его внутренней крайне континентальной части превышают 40 °С. Летом в глубине материков теплее, чем на периферии, но различия не столь велики. Обобщенное представление о степени океанического влияния на температурный режим материков дают показатели континентальности климата. Существуют различные способы расчета таких показателей, основанные на учете годовой амплитуды средних месячных температур. Наиболее удачный показатель, учитывающий не только годовую амплитуду температур воздуха, но и суточную, а также недостаток относительной влажности в самый сухой месяц и широту пункта, предложил Н.Н.Иванов в 1959 г. Приняв среднее планетарное значение показателя за 100%, ученый разбил весь ряд величин, полученных им для разных пунктов земного шара, на десять поясов континентальности (в скобках цифры даны в процентах): 1) крайне океанический (менее 48); 2) океанический (48 — 56); 3) умеренно-океанический (57 — 68); 4) морской (69 — 82); 5) слабо-морской (83—100); 6) слабо-континентальный (100—121); 7) умеренно континентальный (122—146); 8) континентальный (147—177); 9) резко континентальный (178 — 214); 10) крайне континентальный (более 214). На схеме обобщенного континента (рис. 5) пояса континентальности климата располагаются в виде концентрических полос неправильной формы вокруг крайне континентальных ядер в каждом полушарии. Нетрудно заметить, что почти на всех широтах континентальностъ изменяется в широких пределах. Около 36 % атмосферных осадков, выпадающих на поверхность суши, имеют океаническое происхождение. По мере продвижения в глубь суши морские воздушные массы теряют влагу, оставляя большую часть ее на периферии материков, в особенности на обращенных к Океану склонах горных хребтов. Наибольшая долготная контрастность в количестве осадков наблюдается в тропических и субтропических широтах: обильные муссонные дожди на восточной периферии материков и крайняя аридность в центральных, а отчасти и в западных областях, подверженных воздействию континентального пассата. Этот контраст усугубляется тем, что в том же направлении резко возрастает испаряемость. В результате на притихоокеанской периферии тропиков Евразии коэффициент увлажнения достигает 2,0 — 3,0, тогда как на большей части пространства тропического пояса он не превышает 0,05,
Ландшафтно-географические следствия континентально-океа-нической циркуляции воздушных масс чрезвычайно многообразны. Кроме тепла и влаги из Океана с воздушными потоками поступают различные соли; этот процесс, названный Г.Н.Высоцким импульверизацией, служит важнейшей причиной засоления многих аридных областей. Уже давно было замечено, что по мере удаления от океанических побережий в глубь материков происходит закономерная смена растительных сообществ, животного населения, почвенных типов. В 1921 г. В. Л. Комаров назвал эту закономерность меридиональной зональностью; он считал, что на каждом материке следует выделять по три меридиональные зоны: одну внутриматериковую и две приокеанические. В 1946 г. эту идею конкретизировал ленинградский географ А. И.Яунпутнинь. В своем 181 физико-географическом районировании Земли он разделил все материки на три долготных сектора — западный, восточный и центральный и впервые отметил, что каждый сектор отличается свойственным ему набором широтных зон. Впрочем, предшественником А. И.Яунпутниня следует считать английского географа А.Дж. Гербертсона, который еще в 1905 г. разделил сушу на природные пояса и в каждом из них выделил по три долготных отрезка — западный, восточный и центральный. При последующем, более глубоком изучении закономерности, которую стало принятым называть долготной секторностью, или просто секторностью, оказалось, что трехчленное секторное деление всей суши слишком схематично и не отражает всей сложности этого явления. Секторная структура материков имеет ясно выраженный асимметричный характер и неодинакова в разных широтных поясах. Так, в тропических широтах, как уже было отмечено, четко намечается двучленная структура, в которой доминирует континентальный сектор, а западный редуцирован. В полярных широтах секторные физико-географические различия проявляются слабо вследствие господства довольно однородных воздушных масс, низких температур и избыточного увлажнения. В бо-реальном поясе Евразии, где суша имеет наибольшее (почти на 200°) протяжение по долготе, напротив, не только хорошо выражены все три сектора, но и возникает необходимость установить дополнительные, переходные ступени между ними. Первую детальную схему секторного деления суши, реализованную на картах «Физико-географического атласа мира» (1964), разработала Е. Н. Лукашова. В этой схеме шесть физико-географических (ландшафтных) секторов. Использование в качестве критериев секторной дифференциации количественных показателей — коэффициентов увлажнения и континентальное™, а в качестве комплексного индикатора — границ распространения зональных типов ландшафтов позволило детализировать и уточнить схему Е. Н.Лукашовой. Здесь подойдем к существенному вопросу о соотношениях между зональностью и секторностью. Но предварительно необходимо обратить внимание на определенную двойственность в употреблении терминов зона и сектор. В широком смысле, эти термины используются как собирательные, по существу типологические понятия. Так, говоря «зона пустынь» или «зона степей» (в единственном числе), часто имеют в виду всю совокупность территориально разобщенных площадей с однотипными зональными ландшафтами, которые разбросаны в разных полушариях, на разных материках и в различных секторах последних. Таким образом, в подобных случаях зона не мыслится как единый целостный территориальный блок, или регион, т.е. не может рассматриваться как объект районирования. Но вместе с тем те же тер- 182 мины могут относиться к конкретным, целостным территориально обособленным выделам, отвечающим представлению о регионе, например Зона пустынь Центральной Азии, Зона степей Западной Сибири. В этом случае имеют дело с объектами (таксонами) районирования. Точно так же мы вправе говорить, например, о «западном приокеаническом секторе» в самом широком смысле слова как о глобальном феномене, объединяющем ряд конкретных территориальных участков на различных континентах — в приатлантической части Западной Европы и приатлан-тической части Сахары, вдоль тихоокеанских склонов Скалистых гор и т.д. Каждый подобный участок суши представляет собой самостоятельный регион, но все они являются аналогами и также именуются секторами, однако понимаемыми в более узком смысле слова. Зону и сектор в широком смысле слова, имеющем явно типологический оттенок, следует трактовать как имя нарицательное и соответственно писать их названия со строчной буквы, тогда как те же термины в узком (т. е. региональном) смысле и входящие в состав собственного географического названия, — с прописной. Возможны варианты, например: Западно-Европейский приатлан-тический сектор вместо Приатлантический сектор Западной Европы; Евроазиатская степная зона вместо Степная зона Евразии (или Зона степей Евразии). Между зональностью и секторностью существуют сложные соотношения. Секторная дифференциация в значительной степени определяет специфические проявления закона зональности. Долготные секторы (в широком понимании), как правило, вытянуты вкрест простирания широтных зон. При переходе из одного сектора в другой каждая ландшафтная зона претерпевает более или менее существенную трансформацию, а для некоторых зон границы секторов оказываются и вовсе непреодолимыми барьерами, так что их распространение ограничено строго определенными секторами. Например, средиземноморская зона приурочена к западному приокеаническому сектору, а субтропическая влажнолесная — к восточному приокеаническому (табл. 2 и рис. б)1. Причины таких кажущихся аномалий следует искать в зонально-секторных зако-
1 На рис. 6 (как и на рис. 5) все континенты собраны воедино в строгом соответствии с распределением суши по широте, с соблюдением линейного масштаба по всем параллелям и осевому меридиану, т. е. в равновеликой проекции Сансона. Тем самым передается действительное соотношение всех контуров по площадям. Аналогичная, широко известная и вошедшая в учебники схема Е. Н.Лукашовой и А. М. Рябчикова построена без соблюдения масштаба и потому искажает пропорции между широтной и долготной протяженностью условного массива суши и площадные соотношения между отдельными контурами. Существо предлагаемой модели точнее выражается термином обобщенный континент вместо часто употребляемого идеальный континент. 183
номерностях распределения солнечной энергии и в особенности атмосферного увлажнения. Основными критериями для диагностики ландшафтных зон служат объективные показатели теплообеспеченности и увлажнения. Экспериментальным путем установлено, что среди множества возможных показателей для нашей цели наиболее приемле- 184
мы сумма температур за период со средней суточной температурой выше 10 °С и коэффициент увлажнения Высоцкого —Иванова. На рис. 7 показана связь ландшафтных зон с величинами названных показателей, т. е. положение зон в «системе координат» теплообеспеченности и увлажнения. По существу — это классификация зон по двум критериям в матричной форме, но в графиче-
ском выражении, а не в табличном. Ее нельзя отождествлять с секторно-поясной матрицей (см. табл. 2), в которой отражается пространственное положение зон в системе широтных поясов и секторов. Горизонтальным рядам на рис. 7 отвечают группы зон-аналогов по теплообеспеченности, которые в общем соответствуют тем же широтным тепловым поясам, что и в табл. 2. Нетрудно заме- 186
ряды ландшафтных зон-аналогов по теплообеспеченности'. I — полярные; II — субполярные; III — бореальные; IV — суббореальные; V — предсубтропические; VI — субтропические; VII — тропические и субэкваториальные; VIII — экваториальные; ряды ландшафтных зон-аналогов по увлажнению: А — экстрааридные; Б — аридные; В — семиаридные; Г — семигумидные; Д — гумидные; 1 — 28 — ландшафтные зоны (пояснения в табл. 2); Т — сумма температур за период со средними суточными температурами воздуха выше 10 °С; К — коэффициент увлажнения. Шкалы — логарифмические
тить, что каждый такой ряд зон-аналогов укладывается в определенный интервал величин принятого показателя теплообеспеченности. Так, зоны суббореального ряда лежат в интервале суммы температур 2200—4000 "С, субтропического — 5000 — 8000 "С. В рамках принятой шкалы менее четкие термические различия наблюдаются между зонами тропического, субэкваториального и экваториального поясов, но это вполне закономерно, поскольку в данном случае определяющим фактором зональной дифференциации выступает не теплообеспеченность, а увлажнение1. Если ряды зон-аналогов по теплообеспеченности в целом совпадают с широтными поясами, то ряды увлажнения имеют более сложную природу, заключая в себе две составляющих — зональную и секторную, и в их территориальной смене отсутствует однонаправленность. Различия в атмосферном увлажнении обус-
1 В силу указанного обстоятельства, а также вследствие недостатка надежных данных в табл. 2 и на рис. 7 и 8 тропический и субэкваториальный пояса объединены и относящиеся к ним зоны-аналоги не разграничены. 187 ловлены как зональными факторами при переходе от одного широтного пояса к другому, так и секторными, т. е. долготной адвекцией влаги. Поэтому формирование зон-аналогов по увлажнению в одних случаях связано преимущественно с зональностью (в частности, таежной и экваториальной лесной в гумидном ряду), в других — секторностью (например, субтропической влажнолес-ной в том же ряду), а в третьих — совпадающим эффектом обеих закономерностей. К последнему случаю можно отнести зоны субэкваториальных переменновлажных лесов и лесосаванн. Таким образом, пять рядов зональных аналогов по увлажнению на рис. 7 не тождественны секторам, обозначенным в табл. 2. Основной «водораздел» между рядами увлажнения проходит по линии коэффициента увлажнения, равного единице, которая отделяет гумидные (лесные) зоны разных широтных поясов от нелесных. Лишь тайга и подтайга частично заходят в семигумидный ряд. Как следует из рис. 7, с уменьшением теплообеспеченности границы зон-аналогов по увлажнению сдвигаются вправо по шкале; иными словами, ландшафты аридны
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|