Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Основные положения технической




ПРЕДИСЛОВИЕ

Механика, являясь частью физики, изучает общие закономерности, связывающие механические движения и взаимо­действия тел, находящихся в трех состояниях: твердом, жидком и газообразном. Различное состояние тел способствовало раз­делению механики на отдельные области.

В механике твердого тела рассматриваются абсолютно твердые и деформируемые тела; последние, в свою очередь, разделяются: на тела упругие и пластические. Изучением законов движения абсолютно твердых тел занимается теоретическая механика, а упругих и пластических — соответственно теория упругости и теория пластичности.

Законы движения жидкостей и газов изучает механика жидкостей и газов или гидромеханика.

Механика жидкостей и газов, так же как и другие области меха­ники, разделяется на статику, кинематику и динамику. Часть гидромеханики, изучающая условия равновесия жидкостей и га­зов, называется гидростатикой. Кинематика жидкостей и газов изучает их движение во времени, не интересуясь причинами, вызывающими это движение. Предметом изучения гидродинамики является движения жидкостей и газов в связи с их взаимодей­ствием.

Гидромеханика пользуется в качестве основного метода иссле­дований строгим математическим анализом.

Вначале независимо, а затем параллельно гидромеханике развивалась гидравлика - при­кладная инженерная наука о равновесии и движении жидкостей, основанная преимущественно на экспериментальных данных и раз­рабатывающая приближенные методы расчета течений жидкости в трубах, каналах и реках, а также в элементах машин с гидравлическим приводом.

Происхождение науки гидравлики очень древнее. Явления, относящиеся к области гидравлики, интересовали человека еще в самые отдаленные времена. Многие вопросы, связанные с орошением, водоснабжением и использованием водной энергии для примитивных двигателей, решали в глубокой древности.

Основоположником гидравлики считают древнегреческого ученого Архимеда (384-322 до н.э.), который написал трактат “О плавающих те­лах”. Большой вклад в развитие гидравлики внесли Леонардо да Винчи (1452-1519), Галилей (1564-1642), Паскаль (1623-1662). Итальянский ученый Торричелли - ученик Галилея открыл закон истечения жидкости из сосуда и дал формулу, определяющую скорость истечения жидкости. Французский ученый Паскаль опубликовал в 1650 г. закон о передаче внешнего давления в жидкости, а в 1687 г. английский ученый Ньютон (1642-1727) сформулировал закон внутреннего трения в движущейся жидкости.

Гидравлика как самостоятельная наука начала формировать­ся в XVIII в. после работ, выполненных в Петербургской акаде­мии наук М. В. Ломоносовым (1711-1765), Д. Бернулли(1700-1782) и Л. Эйлером (1707-1783), которые разработали основные законы движения жидкости. В 1738 г. Д. Бернулли опубликовал книгу “Гидродина­мика”. Даниил Бернулли впервые ввел термин «гидромеханика». Он установил зависимость между удельными энергими при дви­жении жидкости, которая в настоящее время называется уравне­нием Бернулли. Кроме того, он исследовал задачу о давлении струи жидкости на пластину.

В 1748 г. М. В. Ломоносов впервые изложил открытый им закон сохранения энергии. В 1755 г. Л. Эйлер вывел диффе­ренциальные уравнения равновесия и движения жидкостей.

Дальнейший этап в истории развития гидромеханики, объеди­няющий конец XVIII и начало XIX веков, характерен математи­ческой разработкой гидродинамики идеальной жидкости. В этот период вышли труды французских математиков Лагранжа (1736 - 1813) и Коши (1789 - 1857), посвященные потенциальным плоским потокам, теории волн малой амплитуды и др.

Основы теории движения вязкой жидкости были заложены французским ученым Навье (1785—1836) и английским физиком и математиком Стоксом (1819—1903). Поэтому уравнения дви­жения вязкой жидкости называются уравнениями Навье— Стокса.

В 1881 г. профессор Казанского университета И. С. Громеко (1851—1889) опубликовал работу «Некоторые случаи движения несжимаемой жидкости», в которой дал новую форму уравнений движения жидкости, удобную для получения энергетических за­висимостей. Им же впервые было проведено теоретическое иссле­дование нестационарного движения жидкости в капиллярах.

Большую роль в развитии гидравлики сыграли русские уче­ные: Н. П. Петров, Н. Е. Жуковский (1847-1921), В. Г. Шухов исследования которых в области механики жидкости стали классическими. В 1883 г. Н. П. Петров разработал гидродинами­ческую теорию смазки. Опубликованная в 1889 г. работа русско­го ученого Н. Е. Жуковского “О гидравлическом ударе в водо­проводных трубах” получила мировую известность.

Из многочисленных экспериментальных исследований движе­ния жидкости в трубах укажем на опыты с трубками малого диа­метра французского врача и испытателя Пуазёйля (1799—1869), изучавшего движение крови в сосудах, и опыты английского фи­зика Рейнольдса (1842—1912), установившего в 1883 г. закон подобия течений в трубах.

Целую эпоху в истории развития гидромеханики составляют исследования по воздухоплаванию, включающие разработку тео­рии полета самолетов и ракет. Результаты этих исследований были изложены в трудах выдающихся русских ученых Д. И.Менделеева (1834—1907),Н. Е. Жуковского и С. Д. Чаплыгина (1869—1942). В 1880 г, Д. И. Менделеев опубликовал работу «О сопротивлении жидкостей и воздухоплавании», в которой были высказаны важные положения о механизме сопротивления движению тел в жидкости и даны основные представления о пограничном слое. Созданию теории крыла и воздушного винта были посвящены исследования Н. Е. Жуковского. В 1906 г. он разработал теорию подъемной силы крыла, имеющую большое значение.

Дальнейшее развитие гидромеханики широко используется при создании современных машин различного назначения с гидроприводом, в том числе технологических

Повышение технического уровня гидрофицированных технологических: кузнечно-прессовых, металлургических и подъёмно-транспортных машин основано прежде всего на применении современного гидрооборудования и средств гидроавтоматики, обладающих высокими основными параметрами и показателями надежности. К важнейшим показателям, характеризующим эксплуатационные свойства гидрооборудования данных машин, относятся диапазон регулирования и работоспособность в широком интервале изменения температур воздуха и рабочей жидкости, а также возможность дистанционного и автоматического управления исполнительными механизмами машин. При разработке данного пособия были приняты во внимание работы по разработке, созданию и применению гидроприводов на промышленных предприятиях города Магнитогорска. В частности, учтен опыт использования элементов и систем гидроприводов технологических машин таких широко известных фирм, как “MANNESMAN REXROTH”, “BOSH”, “HITACHI”, “MOOG” на Магнитогорском металлургическом комбинате, а также в подъемно-транспортных, строительных, дорожных машинах различных фирм, используемых в тресте “Магнитострой“.

 

ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕХНИЧЕСКОЙ

ГИДРОМЕХАНИКИ

 

Основные понятия и определения

Любое вещество может находиться в трех состояниях: твердом, жидком и газообразном. Данные состояния различают по внешним и внутренним признакам. К внешним относятся: плотность, вязкость, сжимаемость, температура замерзания и др. Внутренние определяются структурой тела. С позиции микромира состояние вещества определяется по соотношению потенциальной и кинетической энергии микрочастиц, входящих в состав тела.

В газообразном состоянии молекулы движутся свободно, почти не испытывая притяжения друг к другу. Потенциальная энергия молекул газа незначительна, кинетическая энергия имеет большие значения, так как газообразное состояние наблюдается при достаточно высокой температуре.

Жидкое состояние того же вещества характеризуется более низкой температурой и, следовательно, меньшим значением кинетической энергии, потенциальная энергия молекул жидкости больше, чем молекул газа.

В твердых телах молекулы находятся ближе друг к другу, чем в жидкостях. Силы взаимодействия между микрочастицами велики и их перемещение из одной части пространства в другую затруднено.

С позиции микромира в технической гидромеханике жидкостью называют физическое тело, обладающее следующими свойствами:

1. Жидкость практически не изменяет свой объем при изменении давления или температуры (в этом случае жидкость похожа на твердое тело).

2. Жидкость обладает текучестью, т.е. способностью неограниченно изменять свою форму под действием сколь угодно малых сил, и принимает форму сосуда, в котором она находится (в этом случае жидкость отличается от твердого тела и сходна с газом).

Одним из важнейших принципов технической гидромеханики является принцип неразрывности, в основу которого положено представление о жидкости как о непрерывной среде, т.е. ее сплошности. При этом допускается деление жидкости на материальные частицы микромира. Размеры молекул и расстояния между ними ничтожно малы по сравнению с объектами, изучаемыми в технической гидромеханике (например, шероховатость поверхности золотника).

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...