Соотношение неопределенностей гейзенберга
⇐ ПредыдущаяСтр 6 из 6 Во многих случаях классические представления (например, в каждый момент времени частица занимает в пространстве строго определенное 1 место и обладает определенным импульсом) неприменимы для описания микрообъектов. Гейзенберг выдвинул идею о принципиальной невозможности измерения определенных пар связанных между собой характеристик так, чтобы они одновременно имели точные значения. 6.18 Соотношение неопределенностей для координат и импульсов_______
Физический смысл соотношения ____________________________________________ Из соотношения неопределенностей следует, что, например, если микрочастица находится в состоянии с точным значением координаты ( 6.19 Соотношение неопределенностей для энергии и времени______________
Физический смысл соотношения _____________ _________________ Из-за конечности времени жизни атомов в возбужденном состоянии энергия возбужденных состояний атомов не является точно определенной, поэтому частота излученного фотона также должна иметь неопределенность
6.20 Соотношение неопределенностей — следствие специфики микрообъектов________________________ _________ Невозможность одновременно точно определить координату и соответствующую проекцию импульса не связана с несовершенством методов измерения или измерительных приборов, а является следствием специфики микрообъектов, отражающей особенности их объективных свойств, а именно двойственной корпускулярно-волновой природы. Соотношение неопределенностей получено при одновременном использовании классических характеристик движения частицы (координаты, импульса) и наличия у нее волновых свойств. Так как в классической механике принимается, что измерение координаты и импульса может быть произведено с любой точностью, то соотношение неопределенностей является, таким образом, квантовым ограничением применимости классической механики к микрообъектам. ♦ Повышение точности в знании одной переменной, таким образом, ведет к понижению точности в знании другой, и наоборот. Поэтому если в классической механике наличие координат и импульсов (скоростей) системы точно задает ее поведение во времени и пространстве, то предсказание поведения квантовой системы должно носить вероятностный характер. 6.2.3. ВОЛНОВАЯ ФУНКЦИЯ И ЕЕ СТАТИСТИЧЕСКИЙ СМЫСЛ В общем случае (произвольное движение частицы в произвольных силовых полях) состояние частицы в квантовой механике задается волновой е функцией (или пси-функцией) 6.21 Статистическая интерпретация волновой функции_________________ На основании статистической интерпретации вероятность нахождения частицы в момент времени tс координатами х и х + Δ х, у и у + Δ у, г + Δzопределяется интенсивностью волновой функции, т. е. квадратом пси-функции. Поскольку в общем случае Ψ — комплексная функция а вероятность должна быть всегда действительной и положительной величиной, то за меру интенсивности принимается квадрат модуля во волновой функции.
[Ψ* — функция, комплексно сопряженная Ψ] 6.22 Физический смысл Ψ-функции________________________________
♦ Волновая функция — объективная характеристика состояния микрочастиц должна удовлетворять ряду ограничений. Она должна быть конечной (вероятность не может быть больше единицы), однозначной (вероятность не может быть неоднозначной величиной) и непрерывной (вероятность не может изменяться скачком) 6.23 Принцип суперпозиции состояний для волновых функций_________
[Сп (п = 1, 2,...) — произвольные (в общем случае комплексные) числа, при этом квадрат модуля коэффициента С n, т. е. |Сn|2, равен вероятности обнаружить, что система, представленная состоянием Ψ, может оказаться в состоянии Ψ n. Сложение волновых функций (амплитуд вероятностей), а не вероятностей ( определяемых квадратами модулей волновых функций) принципиально отличает квантовую теорию от классической статистической теории, в которой для независимых событий справедлива теорема сложения вероятностей]
6.2.4. ВРЕМЕННОЕ И СТАЦИОНАРНОЕ УРАВНЕНИЯ ШРЕДИНГЕРА 6.24 Основное уравнение нерелятивистской квантовой механики___________________ Статистическое толкование волн де Бройля 6.22 и соотношение неопределенностей Гейзенберга 6.18 привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции ЧХх, у, г, I), так как именно она, или, точнее, величина Iх?!2, определяет вероятность пребывания частицы в момент времени I в объеме (IV, т. е. в области с координатами х и х + Ах, у иг/ + Ау, гшг + Аг. Так как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением, подобно уравнению, описывающему электромагнитные волны. Временное уравнение Шредингера__________________________________________________
Условия, накладываемые на волновую функцию______________________________________ ♦ Волновая функция должна: быть конечной, однозначной и непрерывной. ♦ Производные ♦ Функция |Ψ|2 должна быть интегрируема (это условие сводится к условию нормировки вероятностей 6.22). ♦ Уравнение Шредингера справедливо для нерелятивистских частиц (скорости 6.25 Стационарное уравнение Шредингера________________________________________ Представление волновой функции для стационарных состояний
(состояний с фиксированными значениями энергии)_______________________________
Стационарное уравнение Шредингера____________________________________________ Получилось после подстановки волновой функции во временное уравнение Шредингера и преобразований. [Ψ - координатная (амплитудная) часть волновой функции Ψ(x,y,z,t) - ее потенциальная энергия; Δ - оператор Лапласа] Собственные значения энергии_______________________________________________________ В уравнение Шредингера в качестве параметра входит полная энергия Е. Реальный физический смысл имеют только решения, которые выражаются регулярными функциями Ψ (Ψ должны быть конечными, однозначными и непрерывными вместе со своими первыми производными). Регулярные решения имеют место лишь при определенном наборе Е, отвечающем данной задаче. Эти значения энергии называются собственными. Онимогут образовывать как непрерывный, так и дискретный спектр энергий.
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|