Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Таким образом, из соотношения (34.5) вытекает подтверждение механического принципа относительности: уравнения динамики при переходе от одной инерциальной




*Х. Лоренц (1853—1928) — нидерландский физик-теоретик.




 


системы отсчета к другой не изменяются, т. е. являются инвариантными по отношению преобразованиям координат. Галилей обратил внимание, что никакими механичес­кими опытами, проведенными в данной инерциальной системе отсчета, нельзя устано­вить, покоится ли она или движется равномерно и прямолинейно. Например, сидя в каюте корабля, движущегося равномерно и прямолинейно, мы не можем определить, покоится корабль или движется, не выглянув в окно.

§ 35. Постулаты специальной (частной) теории относительности

Классическая механика Ньютона прекрасно описывает движение макротел, движущих­ся с малыми скоростями (v«с). Однако в конце XIX в. выяснилось, что выводы классической механики противоречат некоторым опытным данным, в частности при изучении движения быстрых заряженных частиц оказалось, что их движение не подчи­няется законам механики. Далее возникли затруднения при попытках применить механику Ньютона к объяснению распространения света. Если источник и приемник света движутся друг относительно друга равномерно и прямолинейно, то, согласно классической механике, измеренная скорость должна зависеть от относительной скоро­сти их движения. Американский физик А. Майкельсон (1852—1913) в 1881 г., а затем в 1887 г. совместно с Е. Морли (американский физик, 1838—1923) пытался обнаружить движение Земли относительно эфира (эфирный ветер) — опыт Майкельсона — Морли, применяя интерферометр, названный впоследствии интерферометром Майкельсона (см. § 175). Обнаружить эфирный ветер Майкельсону не удалось, как, впрочем, не удалось его обнаружить и в других многочисленных опытах. Опыты «упрямо» показы­вали, что скорости света в двух движущихся друг относительно друга системах равны. Это противоречило правилу сложения скоростей классической механики.

Одновременно было показано противоречие между классической теорией и уравне­ниями (см. § 139) Дж. К. Максвелла (английский физик, 1831—1879), лежащими в ос­нове понимания света как электромагнитной волны.

Для объяснения этих и некоторых других опытных данных необходимо было создать новую механику, которая, объясняя эти факты, содержала бы ньютоновскую механику как предельный случай для малых скоростей (v«с). Это и удалось сделать А. Эйнштейну, который пришел к выводу о том, что мирового эфира — особой среды, которая могла бы быть принята в качестве абсолютной системы, — не существует. Существование постоянной скорости распространения света в вакууме находилось в согласии с уравнениями Максвелла.

Таким образом, А. Эйнштейн заложил основы специальной теории относительности. Эта теория представляет собой современную физическую теорию пространства и вре­мени, в которой, как и в классической ньютоновской механике, предполагается, что время однородно (см. § 13), а пространство однородно (см. § 9) и изотропно (см. § 19). Специальная теория относительности часто называется также релятивистской теорией, а специфические явления, описываемые этой теорией, — релятивистскими эффектами.

В основе специальной теории относительности лежат постулаты Эйнштейна, сфор­мулированные им в 1905 г.

I. Принцип относительности: никакие опыты (механические, электрические, оптичес­кие), проведенные внутри данной инерциальной системы отсчета, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной систе­мы отсчета к другой.

П. Принцип инвариантности скорости света: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета.

Первый постулат Эйнштейна, являясь обобщением механического принципа от­носительности Галилея на любые физические процессы, утверждает, таким образом, что физические законы инвариантны по отношению к выбору инерциальной системы


Отсчета, а уравнения, описывающие эти законы, одинаковы по форме во всех инерци-альных системах отсчета. Согласно этому постулату, все инерциальные системы от-1 счета совершенно равноправны, т. е. явления (механические, электродинамические, I оптические и др.) во всех инерциальных системах отсчета протекают одинаково.

Согласно второму постулату Эйнштейна, постоянство скорости светафундаме- I нтальное свойство природы, которое констатируется как опытный факт.

Специальная теория относительности потребовала отказа от привычных представ­лений о пространстве в времени, принятых в классической механике, поскольку они противоречили принципу постоянства скорости света. Потеряло смысл не только абсолютное пространство, но и абсолютное время.

Постулаты Эйнштейна и теория, построенная на их основе, установили новый взгляд на мир и новые пространственно-временные представления, такие, например, как относительность длин и промежутков времени, относительность одновременности событий. Эти и другие следствия из теории Эйнштейна находят надежное эксперимен­тальное подтверждение, являясь тем самым обоснованием постулатов Эйнштей­на — обоснованием специальной теории относительности.

Преобразования Лоренца

Анализ явлений в инерциальных системах отсчета, проведенный А. Эйнштейном на I основе сформулированных им постулатов, показал, что классические преобразования Галилея несовместимы с ними и, следовательно, должны быть заменены преобразова­ниями, удовлетворяющими постулатам теории относительности.

Для иллюстрации этого вывода рассмотрим две инерциальные системы отсчета: К (с координатами х, у, z) и (с координатами ), движущуюся относительно

К (вдоль оси х) со скоростью v=const (рис. 59). Пусть в начальный момент времени когда начала координат О и совпадают, излучается световой импульс. Согласно второму постулату Эйнштейна, скорость света в обеих системах одна и та же и равна с. Поэтому если за время t в системе К сигнал дойдет до некоторой точки А (рис. 59), пройдя расстояние

(36.1) то в системе координата светового импульса в момент достижения точки А

(36.2)

где - время прохождения светового импульса от начала координат до точки А в си­стеме . Вычитая (36.1) из (36.2), получаем

Так как (система перемещается по отношению к системе К), то

т. е. отсчет времени в системах различен — отсчет времени имеет относитель-

ный характер (в классической физике считается, что время во всех инерциальных системах отсчета течет одинаково, т. е. ).

Эйнштейн показал, что в теории относительности классические преобразования Галилея, описывающие переход от одной инерциальной системы отсчета к другой:


заменяются преобразованиями Лоренца, удовлетворяющими постулатам Эйнштейна формулы представлены для случая, когда движется относительно К со скоростью v вдоль оси х).

Эти преобразования предложены Лоренцем в 1904 г., еще до появления теории относительности, как преобразования, относительно которых уравнения Максвелла (см. § 139) инвариантны.

Преобразования Лоренца имеют вид

(36.3)

Из сравнения приведенных уравнений вытекает, что они симметричны и отличаются лишь знаком при Это очевидно, так как если скорость движения системы относительно системы К равна то скорость движения К относительно рав­на —

Из преобразований Лоренца вытекает также, что при малых скоростях (по сравне­нию со скоростью с), т. е. когда они переходят в классические преобразования Галилея (в этом заключается суть принципа соответствия), которые являются, следова­тельно, предельным случаем преобразований Лоренца. При выражения (36.3) для теряют физический смысл (становятся мнимыми). Это находится, в свою очередь, в соответствии с тем, что движение со скоростью, большей скорости распрост­ранения света в вакууме, невозможно.

Из преобразований Лоренца следует очень важный вывод о том, что как расстоя­ние, так и промежуток времени между двумя событиями меняются при переходе от одной инерциальной системы отсчета к другой, в то время как в рамках преобразова­ний Галилея эти величины считались абсолютными, не изменяющимися при переходе от системы к системе. Кроме того, как пространственные, так и временные преоб­разования (см. (36.3)) не являются независимыми, поскольку в закон преобразования координат входит время, а в закон преобразования времени — пространственные координаты, т. е. устанавливается взаимосвязь пространства и времени. Таким об­разом, теория Эйнштейна оперирует не с трехмерным пространством, к которому присоединяется понятие времени, а рассматривает неразрывно связанные пространст­венные и временные координаты, образующие четырехмерное пространство-время.




 


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...