Давление под искривленной поверхностью жидкости
Если поверхность жидкости не плоская, а искривленная, то она оказывает на жидкость избыточное (добавочное) давление. Это давление, обусловленное силами поверхностного натяжения, для выпуклой поверхности положительно, а для вогнутой поверхности — отрицательно. Для расчета избыточного давления предположим, что свободная поверхность жидкости имеет форму сферы радиуса R, от которой мысленно отсечен шаровой сегмент, опирающийся на окружность радиуса (ряс. 100). На каждый бес- конечно малый элемент длины этого контура действует сала поверхностного натяжения касательная к поверхности сферы. Разложив на два компонента видим, что геометрическая сумма сил равна нулю, так как эти силы на противоположных сторонах контура направлены в обратные стороны и взаимно уравновешиваются. Поэтому равнодействующая сил поверхностного натяжения, действующих на вырезанный сегмент, направлена перпендикулярно плоскости сечения внутрь жидкости и равна алгебраической сумме составляющих AF1: Разделив эту силу на площадь основания сегмента пг2, вычислим избыточное давление на жидкость, создаваемое силами поверхностного натяжения и обусловленное кривизной поверхности: (68.1) Если поверхность жидкости вогнутая, то можно доказать, что результирующая сила поверхностного натяжения направлена из жидкости и равна (682) Следовательно, давление внутри жидкости под вогнутой поверхностью меньше, чем в газе, на величину Формулы (68.1) и (68.2) являются частным случаем формулы Лапласа*, определяющей избыточное давление для произвольной поверхности жидкости двоякой кривизны: (68.3) где — радиусы кривизны двух любых взаимно перпендикулярных нормальных
*П. Лаплас (1749—1827) — французский ученый.
Сечений поверхности жидкости в данной точке. Радиус кривизны положителен, если центр кривизны соответствующего сечения находится внутри жидкости, и отрицателен, если центр кривизны находится вне жидкости. Для сферической искривленной поверхности выражение (68.3) перехо- дит в (68.1), для цилиндрической - избыточное давление В случае плоской поверхности силы поверхностного натяжения избыточ- Юго давления не создают. Капиллярные явления Если поместить узкую трубку (капилляр) одним концом в жидкость, налитую в широ-сий сосуд, то вследствие смачивания или несмачивания жидкостью стенок капилляра кривизна поверхности жидкости в капилляре становится значительной. Если жидкость смачивает материал трубки, то внутри ее поверхность жидкости — мениск — имеет вогнутую форму, если не смачивает — выпуклую (рис. 101). Под вогнутой поверхностью жидкости появится отрицательное избыточное давление, определяемое по формуле (68.2). Наличие этого давления приводит к тому, что жидкость в капилляре поднимается, так как под плоской поверхностью жидкости в широком сосуде избыточного давления нет. Если же жидкость не смачивает стенки капилляра, то положительное избыточное давление приведет к опусканию жидкости в капилляре. Явление изменения высоты уровня жидкости в капиллярах называется капиллярностью. Жидкость в капилляре поднимается или опускается на такую высоту А, при которой давление столба жидкости (гидростатическое давление) уравновешивается избыточным давлением где — плотность жидкости, — ускорение свободного падения. Если - радиус капилляра, — краевой угол, то из рис. 101 следует, что откуда (69.1) В соответствии с тем, что смачивающая жидкость по капилляру поднимается, а несмачивающая — опускается, из формулы (69.1) при (cos0>O) получим
положительные значения Л, а при (cos0<O) — отрицательные. Из выражения (69.1) видно также, что высота поднятия (опускания) жидкости в капилляре обратно пропорциональна его радиусу. В тонких капиллярах жидкость поднимается достаточно высоко. Так, при полном смачивании (0=0) вода (р=1000 кг/мэ, а= 0,073 Н/м) в капилляре диаметром 10 мкм поднимается на высоту h=З м.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|