Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Таблица 13.6. Перемещения сус­тавной головки и диска при различных движениях нижней челюсти




S4Q


 


Рис. 13. 32. Регистрация суставного пути и его запись на миллиметровой сетке. 1 — траектория суставного пути в виде кривой. Линия смещения оси суставной головки при перемещении нижней челюсти вниз совпадает с обратным движением; 2 — первые 5 мм кривой, соотнесенные к франкфуртской плоскости, образуют угол суставного пути.



Рис. 13. 31. Угол Беннета.


Таблица 13. 6. Перемещения сус­тавной головки и диска при различных движениях нижней челюсти

 

Движения нижней челюсти Движения в суставе
Неболь­шие вниз, вверх Максима­льное вниз Вперед и назад Боковое смещение Головка мыщелка вращает­ся по своей продольной оси по отношению к диску, движение в подменисковой зоне Ротационные движения го­ловки мыщелка и скольже­ние вместе с диском вперед и вниз по заднему скату су­ставного бугорка, одновре­менные движения в подме­нисковой зоне Скольжение суставной го­ловки с диском вперед и назад по заднему скату сус­тавного бугорка и незначи­тельные шарнирные дви­жения, движения в над- и подменисковой зонах Балансирующая сторона: одностороннее выдвиже­ние на суставной бугорок диска и головки, движения в подменисковой зоне. Ра­бочая сторона: движение суставной головки вокруг вертикальной оси, диск не­подвижный, движения в подменисковой зоне

ложения нижней челюсти либо раз­общением зубных рядов.

Строение ВНЧС позволяет ниж­ней челюсти совершать движения в трех плоскостях: в вертикальной — вниз, вверх (открывание и закрыва­ние), в сагиттальной — вперед, на­зад и в трансверсальной — вправо, влево. Любое положение нижней челюсти является комбинацией этих движений, любая мышца, при­крепляющаяся к нижней челюсти, может осуществить движение в сус­таве. В табл. 13. 6 представлены па­раметры перемещения суставной головки и диска при различных движениях нижней челюсти.

Смещение оси суставной головки вниз и вперед в сагиттальной и вер­тикальной плоскостях при переме­щении нижней челюсти вперед и максимально вниз образует путь, характеризующийся расстоянием и траекторией, имеющей вид кривой, которая образует с франкфуртской плоскостью угол суставного пути. При движении нижней челюсти в сторону на стороне сократившейся латеральной крыловидной мышцы суставная головка с диском сколь­зит по суставной поверхности сус­тавного бугорка вниз, вперед и не­сколько наружу. Передневнутрен-нее смещение мыщелка в сторону глазницы по отношению к сагит­тальному суставному пути состав­ляет угол, описанный Беннетом и названный его именем. В среднем он равен 17° (рис. 13. 31).

Кривая суставного пути, угол су­ставного пути и угол Беннета нахо­дятся в прямой зависимости от ана­томического строения и функции ВНЧС.

Для записи и измерения сустав­ного пути используют различные методы.

Аксиография — метод, позволяю­щий осуществить графическую за­пись траектории смешения сустав­ной головки и диска при различ­ных движениях нижней челюсти с помощью аксиографа. Для записи


пути смещения сустава осуществ­ляют следующие действия: 1) реги­стратор устанавливают острием на отметке " О" координатной сетки при наиболее ретрузионном поло­жении нижней челюсти пациента; 2) окончательно фиксируют удер­живающие зажимы и пациента просят выдвинуть нижнюю че­люсть вперед, чтобы проверить на­личие регистратора на регистраци­онной площадке. После этого путь смещения сустава может быть за­писан при любых движениях ниж­ней челюсти; 3) при произвольном максимальном перемещении паци­ентом нижней челюсти вниз ре­гистрируют кривую движения сус­тавной головки и диска по зад­нему скату суставного бугорка (рис. 13. 32).

Изучение состояния зубов и тка­ней пародонта. Пародонт является опорно-удерживающим аппаратом зубов, его функциональное состоя­ние обусловлено аномалиями зу­бов, зубных рядов, прикуса, что не­обходимо учитывать при планиро­вании ортодонтического лечения и определении продолжительности ретенционного периода.

Для изучения состояния опорных тканей зубов используют электро-


одонтодиагностику, гнатодинамо-метрию, периотестометрию, реопа-родонтографию. Наиболее инфор­мативным методом диагностики яв­ляется периотестометрия, которую можно проводить с помощью ком­пактного прибора «Периотест», со­стоящего из двух частей: приборно­го блока компьютерного анализа и наконечника, соединенных между собой кабелем (рис. 13. 33).

Компьютерный анализатор вклю­чает в себя источник питания, 4 микропроцессора, логические схе­мы сравнения. Два микропроцессо­ра служат для обработки информа­ции, 3-й — содержит программу управления, в 4-й заложена речевая программа. Программа аппарата предусматривает автоматическое перкутирование коронки зуба 16 раз (со скоростью 4 удара в секун­ду). Результаты измерения выдают­ся в звуковом виде и в виде цифро­вой информации на дисплее. При каждом измерительном импульсе аппарат издает короткий звуковой сигнал, а после окончания измере­ния следует длинный звуковой сиг­нал. Затем на цифровом индикато­ре появляется соответствующий ин­декс, который сопровождается зву­ковой речевой информацией.



 




рис. 13. 34. Мастика-циограф и мастикацио-граммы.


Рис. 13. 33. Аппарат «Периотест». Объ­яснение в тексте.

Рабочим элементом в наконечни­ке является боек, включающий пье-зоэлемент, работающий в двух ре­жимах — генераторном и прием­ном. Первый режим — возбуждение механического ударного импульса и передача его бойку, второй — при­ем ответного сигнала механической системы и передача его для анализа в микропроцессорную часть. Нажи­мая кнопку на наконечнике, преоб­разуют электрический импульс в механический.

Удар бойком проводят по вести­булярной поверхности зуба через 250 мс. За этот период возбужденный ударом импульс проходит по зубу, передается тканям периодонта и от­ражается от них. В зависимости от состояния периодонта, его волокон­ного аппарата отраженный сигнал существенно изменяется. Чем выше эластичность волокон периодонта, тем выше демпфирующие (аморти­зирующие) свойства периодонталь-ного связочного аппарата [Копей-кин В. Н., 1980] и тем короче время взаимодействия бойка с зубом. Мик­рокомпьютер прибора регистрирует характеристики взаимодействия бой­ка с зубом, рассчитывает характе­ристику демпфирующих свойств пе­риодонта за 16 ударов, контролирует правильность полученных результа­тов, которые после каждой серии ударов отображаются в виде индекса.


Одним из обязательных условий при проведении исследования яв­ляется определенное положение го­ловы пациента, а также должно быть исключено смыкание зубов. При исследованиях группы верхних фронтальных зубов голову пациен­та следует слегка наклонить вниз, при исследовании группы нижних передних зубов голову его отклоня­ют назад. При изучении состояния опорных тканей пародонта боковых зубов на верхней челюсти пациент отклоняет голову влево или вправо.

При изучении состояния перио­донта перкуссию исследуемого зуба проводят бойком наконечника, ко­торый должен быть направлен го­ризонтально и под прямым углом к середине вестибулярной поверхно­сти коронки зуба и располагаться от него на расстоянии 0, 5—2 мм. Перкуссию постоянного зуба про­водят на уровне между режущей по­верхностью зуба и экватором, так как зубы исследовались на различ­ной стадии прорезывания и форми­рования их корневой части. Откло­нение наконечника от указанного положения приводит к искажению звукового сигнала, отсутствию ин­декса на цифровом индикаторе и звуковой речевой информации.

Регистрация движения нижней челюсти — гнатография проводит­ся по методу Рубинова. Получае­мые с помощью прибора мастика-циограммы позволяют судить о ха­рактере движения нижней челюсти во время функции жевания (рис. 13. 34). Для подсчета жеватель­ных движений при проведении функциональных проб используют метод Персина (рис. 13. 35).

13. 6. Методы лечения зубочелюстных аномалий

Для лечения зубочелюстных анома­лий применяют следующие методы: аппаратурный, хирургический, Фи" зиотерапевтический и лечебную гимнастику.


Рис. 13. 35. Устройство для подсчета количества жевательных движений нижней челюсти.

1 — фиксирующее устройство; 2 — шарнир; 3 — магнит; 4 — рама; 5 — датчик герконо-вый; 6 — прибор для подсчета нижней че­люсти во времени.

13. 6. 1. Аппаратурный метод лечения

Ортодонтические аппараты исполь­зуют для лечения зубочелюстных аномалий, сохранения результата после его окончания и профилак­тики осложнений. Основным мето­дом лечения аномалий зубочелюст-ной системы является аппаратур-


ный. Ортодонтические аппараты бывают внеротовыми, внутрирото-выми (одно- и двучелюстные). В за­висимости от способа крепления их делят на съемные и несъемные.

Лечебные аппараты составляют самую большую группу. Действие их основано на использовании сил давления и тяги. В зависимости от источника нагрузок различают ле­чебные аппараты механического, функционального и комбинирован­ного действия, а также моноблоко­вые и активаторы. Аппараты меха­нического действия создают нагруз­ки на зубочелюстную систему бла­годаря свойствам используемого материала или конструкции. Для механических аппаратов характерно наличие винта, проволоки, лигату­ры, резинового кольца. В них испо­льзуют силу ортодонтического вин­та, упругие свойства проволоки и лигатуры, эластичные свойства ре­зинового кольца. Благодаря собст­венному источнику усилия эти ап­параты также называют активными. Величину и интенсивность нагруз­ки регулирует врач.

Функциональные аппараты дей­ствуют при сокращении мышц ЧЛО, т. е. во время функции, поэто­му их называют пассивными. С по­мощью накусочных площадок, на-


клонных плоскостей сила сокраще­ния жевательных мышц передается на неправильно расположенный зуб, деформированный участок зуб­ного ряда или челюсти. Аппараты комбинированного действия соче­тают в себе активный и пассивный источники нагрузки.

Применяемые в ортодонтических аппаратах силы характеризуются величиной, направлением и длите­льностью действия. Также важно место (точка) приложения силы. Развиваемая аппаратом или жевате­льной мускулатурой сила распреде­ляется на разные участки зубочелю-стной системы, определяя таким образом величину нагрузки на еди­ницу площади. Вопрос о количест­венном значении необходимой для ортодонтического лечения силы впервые в эксперименте на живот­ных решил A. M. Шварц (1932). Он установил, что ортодонтическое давление не должно превышать ка­пиллярное (20—26 г/см2). Опти­мальным является давление (3, 5: 20-103 г/см2). При нагрузке 67 г/см2 обнаруживается травмати­ческое сдавление пародонта. Одна­ко в клинических условиях не уда­ется измерить площадь пародонта перемещаемых зубов и давление на единицу площади. Поэтому о вели­чине развиваемых нагрузок врач су­дит по своим оценкам и ощущени­ям пациента. У ребенка должно по­явиться чувство легкого неудобства, но не боли. В то же время отсутст­вие боли не является критерием физиологичности аппарата.

Перемещение зуба под действием одной приложенной в области ко­ронки силы может быть поступате­льным и вращательным, в зависи­мости от места приложения и на­правления силы. Сила, направлен­ная по продольной (вертикальной) оси зуба, приводит к внедрению или вытяжению. Приложение силы к коронке по касательной к ней обеспечивает поворот зуба вокруг вертикальной оси. Сила, приложен-


ная в области коронки перпендику­лярно к продольной оси зуба (гори­зонтально), наклоняет коронку в направлении действия силы в сто­рону рта, преддверия, мезиально или дистально. При этом корень зуба отклоняется в противополож­ном направлении. Происходит вра­щательное перемещение зуба, кото­рое в ортодонтии принято называть «наклонно-вращательным» [Калве-лисД. А., 1961].

Поступательное перемещение зу­ба в горизонтальной плоскости, или так называемое корпусное, можно осуществить с помощью двух парал­лельных противоположно направ­ленных сил, а также силы и проти­воположно направленного вращате­льного момента, приложенных к ко­ронке зуба, и аппаратами, которые создают с помощью тяги перемеще­ние зуба по направляющей.

Существенна также продолжите­льность действия аппаратов. Одни из них действуют непрерывно, дли­тельно или постоянно, другие — прерывисто (кратковременно). К первым относятся активные аппара­ты, поскольку они действуют до того времени, пока пружина или эластичное кольцо не потеряет упругости. Ко вторым принято от­носить функциональные аппараты, так как они действуют прерывисто, только в момент сокращения мышц. Однако такое деление не всегда ис­тинно. По мнению Д. А. Калвелиса и других исследователей, использова­ние малых и прерывистых сил более целесообразно.

Съемные и несъемные аппараты имеют преимущества и недостатки. Преимущества съемных аппара­тов — удобство ухода за ними, со­блюдение гигиены рта, возможность снять аппарат и проверить результа­ты лечения. Кроме этого, возмож­ность многочисленных модифика­ций и комбинирования с внерото-выми аппаратами, техническая про­стота изготовления. Важно и то, что опорой может быть не только зуб,


н0 и альвеолярный отросток. Съем­ные аппараты легко дозировать, они позволяют осуществлять визуаль­ный контроль. Недостатками их яв­ляются раздражающее действие ба­зиса аппарата на слизистую оболоч­ку вплоть до появления аллергиче­ской реакции, а также подвержен­ность кариесу при несоблюдении гигиены рта. Кроме того, если ребе­нок не дисциплинирован, то съем­ный аппарат он может легко снять.

При применении съемных орто­донтических аппаратов следует по­мнить:

• последовательность воздействия на зубочелюстную систему и объ­ем необходимых перемещений зу­бов, групп зубов планируется в начале лечения;

• успех лечения зависит от опорной части аппарата, которая противо­действует активной (действую­щей силе) части аппарата;

• расширение одного зубного ряда может привести к значительному нарушению окклюзии зубных ря­дов;

• пластиночные аппараты не дол­жны иметь много активных эле­ментов, так как применение сил одновременно в различных на­правлениях может привести к их взаимному гашению;

• наряду с изменением формы и размера зубных рядов происходит изменение миодинамического равновесия мышц-антагонистов и синергистов.

Конечной целью расширения зубных рядов является нормализа­ция их формы, создание места для аномально расположенных зубов, и самое главное — создание оптима­льной окклюзии.

Преимущество несъемных аппа­ратов заключается в невозможно­сти снять их без разрешения вра­ча. Недостаток их в том, что под коронками, каппами, кольцами может рассасываться фосфат-це-


мент, задерживаться пища и раз­виваться кариес. Кариозный про­цесс может возникнуть в местах прилегания лигатур к коронкам зубов. Лигатуры могут раздражать межзубные сосочки, вызывать гингивит, краевой периодонтит.

В ортодонтических лечебных ап­паратах различают действующую и опорную части, укрепляющие и вспомогательные элементы. Дейст­вующей частью механических аппа­ратов являются лигатура, пружины различных модификаций, часть ба­зиса с винтом, прилегающая к де­формированному участку, резино­вое кольцо; в функциональных ап­паратах — наклонная плоскость, накусочная площадка и другие эле­менты. Для крепления съемных ап­паратов используются кламмеры разных конструкций: Адамса, круг­лые, многозвеньевые, стреловид­ные Шварца.

Несъемные аппараты укрепляют на зубах с помощью коронок, колец, капп. Поскольку аппараты фикси­руются временно, опорные зубы не препарируют, что приводит к дизок-клюзии зубных рядов. По показани­ям можно срезать жевательную по­верхность или режущий край корон­ки, превратив ее в кольцо. Посколь­ку шейка ортодонтической коронки или кольца шире шейки зуба, край ортодонтических коронок, колец, капп не должен касаться десны, чтобы не повреждать ее. Коронки, кольца являются хорошей опорой для ортодонтических аппаратов. Ор-тодонтические коронки отличают от ортопедических. Зубы под ортодон-тические коронки не препарируют­ся, граница коронки — до физиоло­гической шейки зуба. Ортодонти-ческие коронки можно изготавли­вать путем их штамповки из гильз. Чаще всего используются ортодон-тические кольца, которые завод­ским путем изготавливают фирмы по типоразмерам. В наборы входят кольца, которые различают в зави-


симости от стороны зубного ряда (левая или правая), а также от челю­сти (верхней или нижней). Коронки (кольца) обычно фиксируются на висфат-цемент или иономер-це-мент. При плотном расположении зубов в зубном ряду для создания промежутков между зубами прово­дят ортодонтическую лигатурную сепарацию.

Перед примеркой и фиксацией коронки (кольца) на цемент лигату­ру разрезают и выводят из межзуб­ного пространства.

Вспомогательными элементами ортодонтических аппаратов явля­ются крючки, штанги, трубки и ка­сательные направляющие. Чаще их припаивают к несъемным аппара­там, реже — вваривают в пластмас­совый базис.

Под действием силы ортодонти­ческих аппаратов зубные ряды, че­люсти подвергаются сжатию, растя­жению и перемещению в различ­ных направлениях. Согласно тре­тьему закону Ньютона, при дейст­вии аппарата на определенные от­делы зубочелюстной системы воз­никает противоположно направлен­ная сила — сила противодействия. Для достижения желаемого лечеб­ного эффекта необходимо создать устойчивость опорной части аппа­рата. Она зависит от площади этой части аппарата, устойчивости опор­ных зубов и величины развиваемой аппаратом нагрузки. Все это выра­жается величиной нагрузки на еди­ницу опорной площади. Для пред­отвращения смещения опорных и перемещения неправильно распо­ложенных зубов нагрузка на едини­цу опорной площади должна быть в 2—3 раза меньше, чем на единицу площади приложения силы. Наи­меньшая нагрузка создается в плас­тиночных аппаратах благодаря бо­льшой площади базиса. В несъем­ных аппаратах, фиксирующихся на коронках, кольцах и каппах, на­грузка на единицу опорной площа­ди значительно больше, поэтому


опорные зубы должны быть устой­чивыми, что обеспечивается сфор-мированностью корней и непо­врежденным пародонтом. В связи с этим существуют возрастные пока­зания к использованию аппаратов: до 10—12 лет применяют, как пра­вило, пластиночные аппараты, а после окончания формирования корней опорных зубов — любые.

13. 6. 1. 1. Механически действующие (активные) аппараты

Активные аппараты подразделяют­ся на внутри- и внеротовые.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...