Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Свойства, классификация и маркировка сталей




Как указывалось выше, сталью называют сплав железа с углеродом и другими элементами с содержанием углерода до 2,14 % (точка Е рис. 3.12).

На свойства стали значительное влияние оказывают постоянные (нежелательные) примеси (сера, фосфор, газы), а также технологические добавки (кремний, марганец и др.). Примеси могут попадать в сплав из природных соединений и руд, а также при переработке металлолома. Основным элементом сплава, по отношению к которому все остальные элементы – примеси, является тот, чья атомная решетка определяет кристаллографическое строение всего сплава. Пока содержание элементов в стали таково, что кристаллографическое строение сплава определяется решеткой железа, сплав называется легированной сталью. Когда содержание элементов достигает таких значений, что строение сплава определяется решеткой добавочных элементов, а не железа, то говорят уже о сплаве (титановом, никелевом и др.).

Если сталь имеет в своем составе железо, углерод и некоторое количество постоянных примесей (S, P, Si, Mn, газы), то такую сталь называют углеродистой. Если в процессе выплавки углеродистой стали к ней добавляют легирующие элементы (Cr, Ni, W, Mo и др.), а также Mn и Si в повышенном количестве (более 0,8 – 1,0 %), то такую сталь называют легированной.

Углерод оказывает основное влияние на свойства углеродистой стали, находится в ее составе главным образом в связанном состоянии в виде цементита. В свободном состоянии в виде графита содержится в чугунах. С увеличением содержания углерода в стали повышаются ее твердость и прочность, уменьшаются пластичность и вязкость.

Сера является нежелательной примесью, образует с железом сульфид железа FeS, который находится в стали в виде эвтектики Fe – FeS с температурой плавления 985 °С.

При нагреве стали до температуры 1000 – 1200 °С для горячей обработки давлением эвтектика плавится, сера кристаллизуется на границах зерен, что приводит к нарушению связи между зернами, повышению хрупкости, разрушению при деформации вследствие образования внутренних трещин и надрывов. Это явление называют красноломкостью. Содержание серы в стали не должно превышать 0,06 %.

Фосфор растворяется в a- и g-Fe, искажает кристаллическую решетку и ухудшает пластичность стали. Фосфор вызывает явление хладноломкости, является нежелательной примесью, содержание которой в сталях должно быть менее 0,08 %.

Азот, кислород присутствуют в сплавах в составе оксидов, нитридов – хрупких неметаллических соединений (включений), которые создают дефекты кристаллической структуры. Они являются концентраторами напряжений и могут понизить механические свойства (прочность, пластичность).

Водород поглощается сталью в атомарном состоянии. При охлаждении сплава растворимость водорода снижается, он накапливается в микропорах под высоким давлением. Это может привести к образованию в материале внутренних надрывов (флокенов).

Марганец и кремний – полезные примеси. Их добавляют в сталь при выплавке. Марганец существенно снижает красноломкость стали, образует пластичный MnS с температурой плавления 1620 °С. Марганец увеличивает твердость, прочность и износостойкость стали, при его содержании более 1,5 % снижается пластичность стали.

Кремний связывает закись железа (FeO) с образованием силикатов (FeO×SiO2), которые удаляются вместе со шлаками. Кроме того, кремний понижает склонность стали к хладноломкости, способствует получению более однородной структуры, положительно сказывается на упругих характеристиках. Кремний способствует изменению магнитных свойств стали, а при содержании его в количестве 15 – 20 % придает материалу кислотоупорность.

Обычное содержание кремния в углеродистой стали – не более 0,4 %, марганца – 0,8 %.

Стали классифицируют по химическому составу, качеству и назначению. По назначению стали подразделяются на конструкционные, инструментальные, стали с особыми физико-химическими свойствами. По химическому составу различают стали углеродистые и легированные.

Конструкционные стали применяют для изготовления деталей машин и конструкций; инструментальные – режущих, измерительных инструментов, штампов и т.д. К сталям и сплавам с особыми свойствами относят жаропрочные, коррозионно-стойкие, магнитные и др. Они нашли широкое применение в приборостроении, в том числе в медицинской технике.

По качеству различают стали обыкновенного качества, качественные, высококачественные и особо высококачественные. При этом учитываются способ выплавки и содержание серы и фосфора. Стали обыкновенного качества имеют повышенное содержание нежелательных примесей – до 0,06 % серы и до 0,08 % фосфора, их механические свойства ниже, чем у сталей других групп. Качественные стали содержат серу и фосфор в концентрации менее 0,035 % каждого элемента. Высококачественные стали, выплавляемые в электропечах, содержат менее 0,025 % и серы, и фосфора. Особо высококачественные стали, подвергнутые электрошлаковому переплаву с вакуумированием, содержат серу и фосфор в концентрации, не превышающей 0,015 %.

Углеродистые стали

В зависимости от содержания углерода стали делятся на низкоуглеродистые с содержанием углерода 0,09 – 0,25 %, среднеуглеродистые с содержанием 0,25 – 0,60 % углерода и высокоуглеродистые с содержанием более 0,60 % углерода.

Стали обыкновенного качества являются наиболее дешевыми и широко применяются в тех случаях, когда к материалу не предъявляются повышенные требования. По сравнению с качественными сталями они содержат больше серы, фосфора, неметаллических включений вследствие менее тщательной очистки в процессе выплавки. Из углеродистых сталей обыкновенного качества изготавливают балки, прутки, листы, трубы; сварные, клепаные и болтовые конструкции (балки, фермы, детали подъемных кранов и др.); малонапряженные детали машин (оси, валы, шестерни, втулки, валики, болты и др.). Детали машин часто упрочняются с помощью термической обработки.

Марки углеродистой стали обыкновенного качества обозначаются буквами и цифрами, например Ст0, …, Ст6, БСт0,…, БСт6, ВCт0, …, ВСт6. Буквы Ст обозначают сталь, цифры от 0 до 6 – условный номер марки в зависимости от химического состава и механических свойств. Чем больше число, тем больше содержание углерода в стали, выше прочность и ниже пластичность.

В зависимости от гарантируемых химического состава и свойств углеродистые стали обыкновенного качества делят на три группы: А, Б, В (группа А в марке стали не указывается). Сталь группы А имеет гарантированные механические свойства и не подвергается горячей обработке. Для стали группы Б гарантируется химический состав, сталь подвергается обработке давлением; для стали группы В гарантируются химический состав и механические свойства (используется для сварных конструкций).

К углеродистым качественным конструкционным сталям предъявляются повышенные требования по химическому составу и механическим свойствам. Эти стали выплавляются кислородно-конвертерным способом в мартеновских или электропечах.

Качественные углеродистые стали маркируют цифрами: 05, 08, 10, 15, 20, …, 85, которые указывают среднее содержание углерода в сотых долях процента. Такие стали делят на несколько групп.

Низкоуглеродистые качественные стали 05, …, 10 (без термической обработки) хорошо обрабатываются давлением в холодном состоянии вследствие их высокой пластичности, а также хорошо свариваются из-за малого содержания углерода. Они используются для производства малонагруженных деталей машин и сварных конструкций.

Стали 15, 20, 25, составляющие вторую группу низкоуглеродистых качественных сталей, хорошо свариваются и обрабатываются резанием. Их применяют без термической обработки или в нормализованном состоянии для изготовления неответственных деталей машин, после цементации – деталей с повышенной износостойкостью (кулачковые валики, кронштейны и др.).

Самой значительной является группа среднеуглеродистых сталей 30, 35, 40, 45, 50, подвергающихся термической обработке. Они хорошо обрабатываются на металлорежущих станках в отожженном состоянии. Сочетание высоких прочностных и пластических свойств позволяет применять эти стали для изготовления ответственных деталей машин (шпиндели, распределительные валы и др.).

Высокоуглеродистые стали 60, 65, 70, 75, 80 и 85 подвергаются различным видам термической обработки, в результате чего приобретают высокую прочность, износостойкость и упругие свойства. Применяются для изготовления пружин, рессор, замковых шайб и др.

Углеродистые инструментальные стали маркируют следующим образом: впереди ставят букву У, затем цифру – среднее содержание углерода, выраженное в десятых долях процента. Например, сталь марки У9 содержит в среднем 0,9 % С, сталь У11 – 1,1 % С.

Для обозначения высококачественных сталей в конце марки ставится буква А, а особо высококачественных сталей (выплавленных, например, методом электрошлакового переплава с вакуумированием) – буква Ш. В марках некоторых специальных сталей буква впереди указывает на назначение: А – автоматная сталь (А30), Р – быстрорежущая сталь (Р12) и др.

Легированные стали

Легированными называют стали, в которых, кроме железа, углерода, случайных примесей и технологических добавок, содержатся легирующие элементы для придания сталям специальных свойств. Основными легирующими элементами являются марганец, кремний, хром, никель, вольфрам, молибден и др.

Легированные стали делят на низколегированные с общим содержанием легирующих элементов до 2,5 %, среднелегированные – 2,5 – 10,0 % и высоколегированные – более 10 %.

Основной целью легирования является изменение строения стали и ее физико-механических свойств. Легированием можно повысить твердость стали, сопротивление износу и коррозии и т.д. В зависимости от входящих в состав сталей легирующих элементов их называют хромистыми, хромоникелевыми, ванадиевыми и т.п.

Влияние легирующих элементов на свойства стали определяется их концентрацией и особенностями взаимодействия с железом и углеродом. При взаимодействии с железом легирующие компоненты обычно образуют твердые растворы или химические соединения, а при взаимодействии с углеродом находятся в связанном или свободном состоянии.

При образовании твердых растворов замещения железа с легирующими компонентами возможна как полная (Ni, Co), так и ограниченная растворимость (Cr, W, Mo). Если введенное в сталь количество примесей превышает предел растворимости, то избыток образует с железом химические соединения: FeCr, Fe3W2, Fe3Mo2 и т.д. При образовании твердых растворов изменяются все свойства исходного материала, особенно физические и механические. При образовании механических соединений изменяются, главным образом, механические свойства стали.

Легирующие компоненты Mn, Cr, W, Mo, V, Ti, Nb, Ta, Zr и др. образуют с углеродом устойчивые карбиды Mn3C, Cr4C3, WC2, Mo2C, VC, TiC, NbC, TaC, ZrC, повышающие предел прочности и твердость стали. Все легирующие компоненты, за исключением Мn, при нагревании стали задерживают рост зерна аустенита, что позволяет подвергать легированные стали обработке давлением, не опасаясь перегрева.

Легирующие элементы оказывают влияние и на другие свойства стали: Ni, V, Co повышают вязкость; Mn, Ni, Cr увеличивают стойкость к истиранию; Ni, Cr, Cu, Si, Mo и др. повышают коррозионную стойкость.

По структуре легированные стали в отожженном состоянии разделяют на следующие группы: доэвтектоидные (содержащие избыточный феррит), эвтектоидные (имеющие перлитную структуру), заэвтектоидные (в структуру входят избыточные вторичные карбиды) и ледебуритные (составной частью структуры являются первичные карбиды).

По структуре в нормализованном состоянии легированные стали делят на три класса:

1) перлитные (содержание легирующих компонентов – до 5 %);

2) мартенситные (содержание легирующих компонентов от 5 до 13 %);

3) аустенитные (содержание легирующих компонентов – до 20–30 %).

Наиболее распространенными являются легированные стали доэвтектоидные, эвтектоидные и перлитные, к которым относятся низко- и среднелегированные конструкционные и инструментальные стали. Стали мартенситные, ферритные, ледебуритные и заэвтектоидные являются высоколегированными.

Качественные, высококачественные и особо высококачественные стали маркируют следующим образом. Содержание углерода указывают в начале марки цифрой, соответствующей его содержанию в сотых долях процента для конструкционных сталей и в десятых долях процента для инструментальных сталей.

Легирующие элементы указывают русскими буквами: марганец – Г, кремний – С, хром – Х, никель – Н, вольфрам – В, ванадий – Ф, титан – Т, молибден – М, кобальт – К, алюминий – Ю, медь – Д, бор – Р, ниобий – Б, цирконий – Ц, азот – А.

Цифры, следующие после букв, указывают содержание легирующего элемента в целых процентах; отсутствие цифры указывает на то, что сталь содержит менее 1,5 % указанного элемента. Исключением являются вольфрам и молибден.

Для высококачественных конструкционных сталей в конце марки ставят букву А. Например, сталь 12Х2Н4 – качественная конструкционная с содержанием 0,12 % углерода, 2 % хрома и 4 % никеля; сталь 12Х2Н4А – высококачественная такого же состава. В конце марки стали особо высокого качества (электрошлакового переплава) стоит буква Ш.

Все стали инструментальные легированные и с особыми свойствами всегда высококачественные, поэтому в конце марки этих сталей буква А не ставится.

Легированные конструкционные стали делят на цементируемые, улучшаемые и высокопрочные.

Для тяжело нагруженных деталей небольших размеров (зубчатые колеса, оси и др.) применяют низкоуглеродистые цементируемые легированные стали марок 20Х, 12Х2Н4А и др. После цементации, закалки в воде и низкого отпуска поверхность деталей приобретает высокую твердость, а сердцевина не упрочняется.

Улучшаемые среднеуглеродистые легированные стали – это стали, подвергаемые улучшению путем термической обработки, состоящей в закалке с 820 – 880 °С в масле с последующим высоким отпуском (550 – 650 °С). Для тяжело нагруженных деталей больших размеров применяют легированные стали марок 40ХН, 30ХГСА и др.

Для деталей с высоким пределом прочности (sВ=1500–2500 МПа) используют высокопрочные стали на основе железа, легированного никелем, кобальтом, титаном, молибденом, хромом и другими элементами марок Н12К15М10, Н18К9М5Т и др. Такие стали называются мартенситностареющими, их закаливают с 800 – 860 °С на воздухе с последующим старением при 450 – 500 °С. Применяют их для особо ответственных тяжело нагруженных деталей.

К конструкционным легированным сталям относятся также износостойкие, рессорно-пружинные, шарикоподшипниковые и др.

Основными свойствами инструментальных легированных сталей являются твердость, вязкость, износостойкость, теплостойкость (красностойкость), прокаливаемость. Инструментальные стали делят на углеродистые (рассмотренные ранее), легированные и быстрорежущие.

Инструменты из легированных сталей после закалки, как правило в масле, и низкого отпуска имеют высокую твердость, отличаются повышенной вязкостью, меньшей склонностью к деформациям и трещинообразованию при закалке. Из легированных инструментальных сталей марок 9ХС, ХВГ, В1, ХВ5 и других изготавливают различные режущие инструменты, имеющие сложную конфигурацию.

При изготовлении штампов для горячей обработки металлов применяют легированные инструментальные стали сложного состава: 4Х2В5ФМ, 4Х3ВФ2М2, 3Х2В8Ф и др.

Быстрорежущие стали широко используют для изготовления режущего инструмента, обладающего большой твердостью и работающего при высоких скоростях резания. Быстрорежущая сталь относится к ледебуритному (карбидному) классу сталей. В ее состав входят карбидообразующие элементы – хром, вольфрам, ванадий, кобальт, молибден.

Высокие режущие свойства инструментов, изготовленных из быстрорежущих сталей марок Р6, Р9, Р12, Р18 (цифра после буквы показывает среднее содержание вольфрама в процентах), получают после закалки с температуры 1210 – 1290 °С в зависимости от марки стали с последующим отпуском. Режущие свойства инструментов повышают также с помощью цианирования.

3.5. Электро- и теплопроводность металлов
и сплавов

Электропроводность металлов

Классическая электронная теория металлов представляет твердый проводник в виде системы, состоящей из узлов кристаллической ионной решетки, внутри которой находится электронный газ из коллективизированных свободных валентных электронов. К электронному газу применялись представления и законы обычных газов. Это привело к выводу законов Ома и Джоуля – Ленца, позволило описать и объяснить ранее обнаруженные экспериментальным путем основные законы электропроводности и потерь электрической энергии в металлах.

Однако исчерпывающее объяснение явлений электропроводности оказалось возможным на основе квантовой механики. В соответствии с квантово–механическими представлениями причиной наличия электрического сопротивления твердых тел является не столкновение свободных электронов с атомами решетки (как в классической теории Друде), а рассеяние их на дефектах решетки, вызывающих нарушение периодичности потенциала. Идеально правильная, бездефектная неподвижная решетка не способна рассеивать свободные носители заряда и поэтому должна обладать нулевым сопротивлением.

Подвижность и длина свободного пробега электронов в твердом теле зависят от структуры материала. Чистые металлы с наиболее правильной кристаллической решеткой характеризуются наименьшими значениями удельного сопротивления r. Примеси, искажая решетку, приводят к увеличению r. С позиций квантовой механики рассеяние электронных волн происходит на дефектах кристаллической решетки, которые соизмеримы с расстоянием порядка четверти длины волны электрона; нарушения меньших размеров не вызывают заметного рассеяния волн де Бройля. В металлическом проводнике, где длина волны электрона порядка 5 Å, микродефекты создают значительное рассеяние, уменьшающее подвижность электронов и длину свободного пробега, и, следовательно, приводят к росту r.

Так как в металлах концентрация электронного газа n практически не зависит от температуры (Т), то зависимость удельного сопротивления r (и обратной величины удельной электропроводности s) от температуры полностью определяется температурной зависимостью подвижности (m) и пропорциональной ей длины свободного пробега электронов (l).

Вследствие усиления колебаний узлов кристаллической решетки с ростом температуры появляется все больше и больше препятствий на пути направленного движения свободных электронов под действием электрического поля, т.е. уменьшается среднестатистическая длина свободного пробега l, уменьшается подвижность электронов и, как следствие, уменьшается удельная проводимость металлов и возрастает удельное сопротивление (рис. 3.14).

Рис. 3.14. Зависимость удельного сопротивления металлов и сплавов от температуры: 1 – железо; 2 – электротехническая сталь с содержанием 4 % Si; 3 – сплав Fe-Ni-Cr

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...