Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Приведение системы сходящихся сил к равнодействующей




Силы называются сходящимися, если линии действия всех сил, составляющих систему, пересекаются в одной точке. Докажем теорему: Система сходящихся сил эквивалентна одной силе (равнодейству­ющей), которая равна сумме всех этих сил и проходит через точку пересечения их линий действия. Пусть задана система сходящихся сил F1, F2, F3,..., Fn, при­ложенных к абсолютно твердому телу (рис. 2.1, а). Перенесем точки приложения сил по линиям их действия в точку пересечения этих линий (21, б). Получили сист сил, прил к одной точке. Она эквивалентна заданной. Сложим F1 и F2, получим их равнодействующую: R2=F1+F2. Сложим R2 с F3: R3=R2+F3=F1+F2+F3. Сложим F1+F2+F3+…+Fn=Rn=R=åFi. Ч.т.д. Вместо параллелограммов можно построить силовой многоугольник. Пусть система состоит из 4 сил (рис 2.2.). От конца вектора F1 отложим вектор F2. Вектор, соединяющий начало О и конец вектора F2, будет вектором R2. Далее отложим вектор F3 помещая его начало в конце вектора F2. Тогда мы получим вектор R8, идущий от точки О к концу вектора F3. Точно так же добавим вектор F4; при этом получим, что вектор, идущий от начала первого вектора F1 к концу вектора F4, является равнодействующей R. Такой пространственный многоугольник называется силовым. Если конец последней силы не совпадает с началом первой силы, то силовой многоугольник наз разомкнутый. Если для нах равнодействующей исп прав геометр, то этот способ наз геометрическим.

Больше пользуются аналитическим способом для определения равнодействующей. Проек­ция суммы векторов на некоторую ось равна сумме проекций на ту же ось слагаемых векторов, получим Rx=åFkx=F1x+F2x+…+Fnx; Ry=åFky=F1y+F2y+…+Fny; Rz=åFkz=F1z+F2z+…+Fnz; где Fkx, Fky, Fkz– проекции силы Fkна оси, а Rx, Ry, Rz– проекции равнодействующей на те же оси. Проекции равнодействующей системы сходящихся сил на координатные оси равны алгебраическим суммам проекций этих сил на соответствующие оси. Модуль равнодействующей R равен: R=(Rx2+Ry2+Rz2)1/2. Направляющие косинусы равны: cos(x,R)=Rx/R, cos(y,R)=Ry/R, cos(z,R)=Rz/R. Если силы распол в пл-ти то всё аналогично, отсутствует ось Z.

55 вопрос

Геометрическим условием равновесия твердого тела, находящегося под действием сходящейся системы сил F1 + F2 +... + Fn является замкнутость силового многоугольника, т. е. начало первого вектора F1 должно совпадать с концом последнего Fn.

Аналитические условия равновесия. При равновесии системы сил модуль равнодействующей R = [Rх2 + Rу2]1/2 = 0, поэтому Rх = F = 0, Rу = Fky = 0.

Для равновесия плоской системы сходящихся сил необходимо и достаточно, чтобы суммы проекций этих сил на оси прямоугольной системы координат Оху были равны нулю:

F = 0, Fky = 0. (k = 1, 2,..., n)

56 вопрос

Момент силыэто мера вращающего действия силы на тело; он определяется произведением модуля силы на ее плечо:

Момент силы считают положительным, когда сила вызывает поворот тела против часовой стрелки, и отрицательным при повороте тела по часовой стрелке (со стороны наблюдателя).

Момент силы — величина векторная: сила проявляет свое вращаю­щее действие, когда она приложена на ее плече (рис. 8, а). Иначе! говоря, линия действия силы не должна проходить через ось вращения. Если сила лежит не в плоскости, перпендикулярной к оси, находят составляющую силы, лежащую в этой плоскости (рис. 8, б); она и вызывает момент силы относительно оси. Остальные составляющие на него не влияют. Понятно, что сила, совпадающая с осью или параллельная ей, также не имеет плеча относительно оси, а следо­вательно, нет и ее момента.

Тяга каждой мышцы образует момент силы относительно оси соответствующего сустава. Силы, извне приложенные к телу во время движения, обычно не проходят через его центр масс, так что возникают моменты сил относительно ЦМ. Силу, не проходящую через точку (например, через ЦМ), в твердом теле можно привести к этой точке.

Алгебраическим моментом силы относительно точки (или центра) называется взятое со знаком плюс или минус произведение модуля силы на плечо (рисунок 1.2).

 

Знак плюс выбирается в том случае, если сила стремится поворачивать плоскость относительно центра момента против хода часовой стрелки.

 

 

Рисунок 1.2

 

Если сила F задана своими проекциями Fx, Fy, Fz на оси координат и даны координаты x, y, z точки приложения этой силы, то момент силы относительно начала координат вычисляется следующим образом:

 

Проекции момента силы на оси координат равны

 

57 вопрос

Теорема Вариньона. Если рассматриваемая плоская система сил приводится к равнодействующей, то момент этой равнодействующей относительно какой-либо точки равен алгебраической сумме моментов всех сил данной системы относительно той оке самой точки. Предположим, что система сил приводится к равнодействующей R, проходящей через точку О. Возьмем теперь в качестве центра при­ведения другую точку O1. Главный момент (5.5) относительно этой точки равен сумме моментов всех сил: MO1Z=åMo1z(Fk) (5.11). С другой стороны, имеем MO1Z=MOlz(R), (5.12) так как главный момент для центра приведения О равен нулю (MOz=0). Сравнивая соотношения (5.11) и (5.12), получаем MO1z(R)=åMOlZ(Fk); (5.13) ч.т.д. При помощи теоремы Вариньона можно найти уравнение линии действия равнодействующей. Пусть равнодействующая R1 приложена в какой-либо точке О1 с координатами х и у (рис. 5.5) и известны главный вектор Fo и главный момент МОя при центре приведения в начале координат. Так как R1=Fo, то составляющие равнодей­ствующей по осям х и у равны Rlx=FOx=FOxi и Rly=FOy=Foyj. Согласно теореме Вариньона мо­мент равнодействующей относительно на­чала координат равен главному моменту при центре приведения в начале коорди­нат, т. е. Моz=MOz(R1)=xFOy–yFOx. (5.14). Величины MOz, FOx и Foy при переносе точки приложения равнодействующей вдоль ее линии действия не изменяются, следовательно, на координаты х и ув уравнении (5.14) можно смотреть как на текущие координаты ли­нии действия равнодействующей. Таким образом, уравнение (5.14) есть уравнение линии действия равнодействующей. При Fox≠0 его можно переписать в виде y=(Foy/Fox)x–(Moz/Fox).

 

58 вопрос

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...