Общие методы выявления и оценивания погрешностей
Выявление и оценка погрешности измерения физической величины и ее составляющих являются традиционными задачами метрологии. Все методы выявления и оценки погрешностей можно разделить на аналитические (теоретические), экспериментальные и смешанные. Кроме того, в ряде случаев используют оценки погрешностей, взятые из информационных источников. Очевидно, что данные о погрешностях, включенные в эти источники, получены с помощью теоретических расчетов или экспериментов. Нахождение значения погрешности в информационных источниках применимо как к погрешности измерения в целом, так и к отдельным составляющим. Инструментальные погрешности средств измерений приведены в документации (стандарты, паспорта) и в справочниках. Источниками информации о погрешностях измерений могут быть такие документы, как стандартизованные или аттестованные методики выполнения измерений. Можно использовать в качестве информационных источников также отчеты о научно-исследовательских работах, монографии и другую научно-техническую литературу при достаточной степени доверия к ее авторам. Базой аналитических методов выявления и оценки погрешностей является функциональный анализ методики выполнения измерений. Функциональный анализ методики выполнения измерений применяют для аналитического определения погрешности измерений по ее составляющим. Функциональный анализ МВИ может проводиться на двух уровнях: 1. Качественный (выявление возможных причин возникновения погрешностей, оценка их предполагаемого характера; выявление аргументов систематических составляющих погрешностей и предполагаемых видов функции; априорная оценка вида распределения случайных составляющих).
2. Количественный (проводится после качественного и включает оценку порядка, предельных или конкретных значений – в зависимости от вида погрешности и полноты имеющейся информации). Метод определения значения погрешности измерений по ее составляющим базируется на объединении известных значений всех значимых составляющих. Его можно использовать для оценки интегральных погрешностей от выбранного источника или от нескольких источников, либо для оценки погрешности измерения в целом. Для расчетов погрешностей строят специальные аналитические модели. Моделирование обычно применяют для расчета составляющих инструментальных и методических погрешностей, а также погрешностей из-за несоответствия условий измерений нормальным. Возможно также моделирование некоторых субъективных составляющих погрешности. Так для оценки погрешностей отсчитывания с аналоговых приборов можно построить модель образования погрешности из-за параллакса, а также модели округления результата или интерполирования дольной части деления. Элементарная модель округления отсчета при положении указателя между отметками шкалы показывает, что в наихудшем случае (положение указателя точно посредине) погрешность округления составит половину цены деления шкалы (j) аналогового прибора. Следовательно, погрешность отсчитывания с округлением составит не более 0,5j, а при интерполировании дольной части деления «на глаз» будет еще меньше. Однако в последнем случае более строгая аналитическая оценка невозможна, поэтому прибегают к экспериментальным методам или к заимствованию данных из информационных источников, которые утверждают, что при хороших эргономических свойствах системы шкала-указатель и хорошем зрении оператора погрешность интерполирования не превышает (0,1…0,2)j. Уровень полноты информации о составляющих погрешностей может колебаться от оценки по шкале наименований до оценки по шкале отношений. Примерами качественных оценок погрешностей по шкале наименований могут быть утверждение о наличии погрешности, возникающей из-за определенных причин, заключение о характере погрешности (скажем, систематическая постоянная погрешность длины объекта при отличии его температуры от нормальной или прогрессирующая температурная погрешность при монотонном изменении температуры). Использование шкалы порядка может выражаться, например, в оценках значимости составляющих погрешности. Наивысшим уровнем оценок погрешностей будет получение их числовых значений. Возможные уровни полноты оценки погрешностей определяются в ходе исследований на следующих этапах:
· обоснование наличия погрешности от некоторого источника; · оценка характера погрешности; · получение оценок порядка погрешностей и/или оценок конкретных числовых значений. Задача первого этапа – определение погрешностей, происходящих от любого источника. Например, если измерения осуществляются методом сравнения с мерой, в инструментальные погрешности входят погрешности прибора и погрешности используемых мер или ансамблей мер. Возможно ли возникновение значимых инструментальных составляющих погрешности от вспомогательных устройств, таких как присоединительные провода электрических приборов и др. необходимо выяснить в ходе анализа. При анализе условий измерения выявляют влияющие величины. Наряду с очевидными воздействиями на объект и/или средства измерений (влияние температуры при линейных измерениях, влияние электромагнитных полей на электрические средства измерений) приходится оценивать более тонкие воздействия, например, влияние атмосферного давления и влажности воздуха на емкостные средства измерений. Обязательными элементами анализа являются также исследование возможности возникновения методических погрешностей из-за идеализации измерительного преобразования или/и объекта измерений, а также выявление составляющих субъективной погрешности. Второй этап (оценка характера погрешности) может основываться как на аналитическом подходе, так и на экспериментальных данных. Глубина исследований здесь также может быть различной, например, можно только констатировать систематический характер выявленной составляющей погрешности или дополнить описание более конкретными данными, например: «постоянная систематическая погрешность используемой меры», «прогрессирующая систематическая погрешность из-за повышения температуры в цехе», «периодическая систематическая погрешность отсчетного устройства прибора из-за эксцентриситета указателя и шкалы». Для случайной погрешности кроме констатации ее стохастического характера важно определить вид распределения (нормальное, равновероятное, трапециевидное и т.д.).
На третьем этапе определяют числовые оценки значения (значений) погрешности. Здесь можно основываться как на аналитическом подходе, так и на экспериментальных данных. При недостаточной информации приходится останавливаться на оценке порядка или границ рассматриваемой погрешности. Более полная информация позволяет получать оценки конкретных значений систематической составляющей, функцию ее изменения, необходимые вероятностные характеристики случайной составляющей погрешности. В метрологии часто применяют методы оценки интегральной (комплексной) погрешности измерения физической величины. Общие методы, пригодные для выявления и оценки погрешностей измерения независимо от их характера и источников возникновения, базируются на решении уравнения D = X – Q, где D – абсолютное значение искомой погрешности, X – результат измерения, Q – истинное значение измеряемой величины. Это уравнение содержит два неизвестных и в строгом математическом смысле неразрешимо, следовательно, для получения удовлетворительного решения необходимо заменить одно из неизвестных его приближенным значением. Получение таких значений и составляет суть общих методов выявления и оценки погрешностей. Экспериментальные методы оценки погрешностей измерений основаны на замене истинного значения измеряемой величины Q действительным значением Хд настолько близким к нему, что разность между ними (погрешность D д) может рассматриваться как пренебрежимо малая по сравнению с искомой (исследуемой) погрешностью, то есть
Q» Хд, или D д» 0, что подразумевает D д << D. Экспериментальные методы оценки погрешностей измерений можно разделить на три группы: · измерение известной физической величины; · повторное измерение одной и той же физической величины с заведомо более высокой точностью; · анализ массивов результатов многократных измерений одной и той же физической величины. Первую группу экспериментальных методов чаще всего реализуют путем измерения физической величины, воспроизводимой «точной» мерой, вторую – с помощью «точных» измерений той же величины с использованием новой методики выполнения измерений. В любом из этих случаев получают количественную оценку погрешности за счет использования заведомо более точной информации об измеряемой физической величине. Различие между методами заключается в том, что первый обеспечивает необходимую точность информации за счет аттестованного размера физической величины, воспроизводимого мерой (предварительная аттестация), а при втором аттестуется сама измеряемая физическая величина (аттестация измеряемого объекта в ходе исследования). Метод определения значения погрешности по результатам измерения точной меры применяют для получения оценки реализуемой погрешности измерений или оценки инструментальной составляющей погрешности, если погрешности от остальных источников удается свести к пренебрежимо малым значениям. Определение значения погрешности измерения или средства измерения возможно только в том случае, когда погрешность измеряемой «точной» меры D м пренебрежимо мала по сравнению с искомой погрешностью D. Искомая погрешность D в этом случае определяется из зависимости: D = X – Хм, где Х – результат измерения меры, Хм – «точное» значение меры (номинальное значение меры или значение меры с поправкой по аттестату), для которого можно записать D м << D. Пример применения такого метода в быту – использование точных гирь для проверки домашних весов. К разновидностям этого метода можно отнести так называемые «Метод замещения» и «Метод противопоставления», которые в метрологической литературе обычно относят к методам оценки систематических составляющих погрешностей. Некорректные наименования методов, совпадающие с терминами, предназначенными для обозначения методов измерений (разновидности метода сравнения с мерой), не должны мешать пониманию сути. Фактически эти методы сводятся или к замещению измеряемой величины «точной» мерой, или к противопоставлению «точной» меры и измеряемой величины.
Метод определения значения погрешности по результатам повторного измерения той же физической величины с использованием заведомо более точной МВИ, обычноприменяют для оценивания погрешности измерений в целом, а не отдельных ее составляющих. Метод основан на том, что погрешность измерения при использовании «точной» МВИ (D МВИ2) пренебрежимо мала по сравнению с искомой погрешностью D, то есть D МВИ2 << D. Искомую погрешность в этом случае определяют из зависимости: D = ХМВИ1 – ХМВИ2, где ХМВИ1 – результат измерения при использовании исследуемой МВИ, ХМВИ2 – результат измерения при использовании «точной» МВИ. Результаты измерений отрезков времени полученные с использованием более точной МВИ в виде сигналов точного времени передают по радио каждый час. Точность гарантирована – сигналы получают с использованием вторичного эталона времени и частоты, с помощью которого отрезки времени измеряют заведомо точнее, чем любыми бытовыми приборами времени. Еще одна специфическая группа экспериментальных методов оценивания погрешностей измерений основана на анализе массивов результатов многократных измерений одной и той же физической величины. Для реализации этих методов можно использовать математическую обработку серий измерений и/или графо-аналитические исследования точечных диаграмм. Математическая обработка массива результатов измерений может включатьвыявление и оценку характеристик систематической составляющей, а также статистическую обработку результатов для оценки случайной составляющей погрешности (после исключения систематической составляющей). Очевидно, что результаты с грубыми погрешностями следует исключать из рассмотрения, поскольку они могут существенно исказить итоговые оценки результатов измерений, а также качественные и количественные оценки систематических и случайных погрешностей. Для получения достоверных оценок случайной составляющей погрешности необходимо набрать представительный массив случайных величин (результатов наблюдений при равнорассеянных измерениях) и произвести его статистическую обработку, причем корректность оценки зависит от того, насколько тщательно были исключены систематические погрешности. Результаты получают при многократном воспроизведении измерительного эксперимента в некоторых фиксированных условиях. Здесь под «условиями» подразумеваются не только собственно условия измерений (влияющие величины) в рабочей зоне, но и использование одной и той же методики выполнения измерений с применением одних и тех же средств измерений одним и тем же оператором. Возможное изменение условий многократных измерений не должно приводить к появлению систематической погрешности или нарушению равнорассеянности результатов. При статистической обработке результатов многократных измерений можно получать такие характеристики, как средние значения серий измерений и значения оценок среднего квадратического отклонения. При наличии нескольких серий измерений можно сравнивать оценки, полученные для разных серий. Можно проводить сравнение двух и более серий результатов измерений, полученных с некоторым разрывом во времени, серий выполненных разными операторами, либо отличающихся использованием разных экземпляров СИ или разных МВИ. Заключение о совпадении или несовпадении сравниваемых оценок при неочевидном их различии может носить субъективный характер, что оставляет место для споров и возникновения конфликтных ситуаций. Наряду с «волевыми» методами сравнения используют и статистические. Анализ точечных диаграмм является сравнительно простым и достаточно эффективным средством, позволяющим не только выявлять и оценивать переменные систематические и случайные составляющие погрешности измерений, но и отбраковывать результаты с явно выраженными грубыми погрешностями. Точечную диаграмму строят в координатах «номер измерения n – результат измерения X». Следует помнить, что точечная диаграмма не является графиком результатов измерений, поскольку по оси абсцисс не откладывают аргумент какой-либо функции. Любая проявляющаяся на точечной диаграмме тенденция изменения результатов свидетельствует только об изменении во времени аргументов, вызывающих переменные систематические погрешности измерений. Проведение аппроксимирующей линии и оценка тенденции осуществляются на основе предположения о равномерном изменении аргумента от измерения к измерению, причем сам аргумент по точечной диаграмме выявить невозможно. Анализ точечных диаграмм результатов многократных измерений одной и той же физической величины (серии измерений) является сравнительно простым и достаточно эффективным средством выявления и оценки погрешностей. Он позволяет выявлять и оценивать переменные систематические и случайные составляющие погрешности измерений и отбраковывать результаты с явно выраженными грубыми погрешностями. При построении точечной диаграммы обычно из технических соображений по оси ординат предпочитают откладывать не сами результаты измерений, а их отклонения от некоторого условного значения. Масштаб желательно выбрать таким, чтобы размах R результатов измерений на диаграмме можно было оценить двумя значащими цифрами.
Постоянная систематическая погрешность вызывает только эквидистантное смещение экспериментальной тенденции относительно идеальной, а характер тенденции при этом не меняется. Поэтому делать какие-либо выводы о постоянной составляющей погрешности в серии измерений по точечной диаграмме нельзя. Можно только высказать предположение о наличии такой погрешности на основании постулата об обязательном присутствии в погрешности измерения систематической составляющей, которая в лучшем случае будет пренебрежимо мала по сравнению со случайной составляющей. Тенденция изменения результатов измерений в серии может быть вызвана только наличием систематической переменной погрешности определенного вида, следовательно, при наличии точечной диаграммы появляется возможность качественного описания такой погрешности, которое может быть дополнено некоторыми количественными (числовыми) оценками. Наличие значимых случайных составляющих погрешности в каждом из наблюдений затрудняет анализ диаграммы, однако достаточно продолжительные серии, как правило, позволяют выявить тенденции, если они имеют место. Возможные тенденции изменения результатов в сериях измерений, проявляющиеся на точечных диаграммах, представлены на рисунке 6.2 (6.2 а – наклон, 6.2 б – мода, 6.2 в – гармонические изменения аппроксимирующей линии). Наличие закономерностей изменения результатов свидетельствуют о присутствии в серии переменных систематических погрешностей. Характер таких погрешностей в первом приближении можно оценить по виду наблюдаемой тенденции изменения результатов (монотонно возрастающие или убывающие, переменные с одним или несколькими экстремумами…), для оформления которой используют аппроксимирующие линии. Аппроксимацию, как правило, осуществляют простейшими линиями: прямой, участком дуги окружности или параболы, для периодических изменений – чаще всего синусоидой (косинусоидой).
Отклонения результатов от аппроксимирующей линии могут рассматриваться как случайные составляющие погрешности измерения. Если отклонения результатов от аппроксимирующей линии полагают случайными, их оценивают предельными (максимальным) значениями – либо одним (максимальным по модулю), либо двумя (максимальными верхним и нижним с учетом знака). Значения отклонений определяют в направлении оси ординат точечной диаграммы с учетом масштаба. Сумма модулей двух максимальных отклонений (верхнего и нижнего) составляет размах случайных отклонений, который чаще всего используют для ориентировочной оценки случайной составляющей погрешности измерения. Более представительной оценкой принято считать среднее квадратическое значение отклонений, которое рассчитывают с использованием статистической обработки всех значений отклонений в серии. Проведение на точечной диаграмме аппроксимирующей линии и оценка тенденции и отклонений от нее осуществляются на основе предположения (допущения) о равномерном или ином закономерном изменении аргумента от измерения к измерению, что приводит к соответствующему закономерному изменению результатов. Такое допущение накладывает определенные ограничения на методику проведения серии многократных измерений одной и той же физической величины. Обязательными условиями являются неизменность самой измеряемой физической величины и методики выполнения ее измерений. Наблюдения следует проводить через примерно одинаковые промежутки времени без перерывов для сохранения постоянства условий в широком смысле, включая не только поддержание влияющих величин в нормальной или рабочей области значений, но и психофизиологическое состояние оператора. Серию не следует продолжать до явного утомления оператора, а его замена может привести к фактическому получению второй серии. Многократные измерения одной и той же физической величины с использованием одной методики выполнения измерений позволяют численно оценить сходимость измерений внутри серии. Высокая сходимость результатов отражается на диаграмме отсутствием тенденций изменения результатов и малыми случайными отклонениями от аппроксимирующей линии. В качестве первичной оценки погрешности измерений в серии, включающей систематическую и случайную составляющие, может быть использован размах результатов многократных измерений (рисунок 6.3) R′ = Xmax – Xmin.
Чтобы получить геометрическое представление размаха R′ результатов измерений в серии, следует провести две прямые, параллельные оси абсцисс, через самую верхнюю и самую нижнюю точки точечной диаграммы. Размах R' включает в себя как рассеяние результатов из-за случайной составляющей погрешности измерений, так и переменную систематическую составляющую погрешности (при ее наличии), вызывающую закономерное изменение результатов во времени. Для того чтобы можно было отдельно рассматривать влияние на измерения детерминированных и стохастических воздействий, из результатов измерений исключают систематические составляющие погрешностей. Такую операцию называют «исправлением результатов измерений», а результаты измерений после исключения из них систематических погрешностей считают «исправленными». В соответствии со сказанным, следует различать размахи «неисправленных» R' и «исправленных» R результатов измерений. Полное исправление результатов требует абсолютной строгости в определении систематических составляющих погрешностей каждого из результатов измерений, что невозможно осуществить с помощью точечной диаграммы. Даже если принятые при ее построении допущения соответствуют реальной ситуации, постоянная составляющая систематических погрешностей всегда остается невыявленной. Однако с использованием точечной диаграммы можно осуществить «частичное исправление» результатов измерений. Для этого на экспериментальные точки накладывают аппроксимирующую линию, которая отражает изменения результатов из-за систематических погрешностей. Если считать, что отклонения результатов от построенной тенденции их изменения вызваны собственно случайными составляющими погрешности, можно перейти к их количественной оценке. В этом случае делается допущение, что аппроксимирующая линия полностью отражает систематические изменения результатов (представляет собой линию «текущего среднего значения»), а отклонения от этой линии рассматривают как случайные составляющие погрешности каждого из наблюдений. Числовые оценки отклонений определяют по точечной диаграмме с учетом ее масштаба. Предложенный прием позволяет разделить и наглядно представить на диаграмме систематические и случайные составляющие погрешности измерений. Для оценки размаха R «исправленных» результатов измерений, который отражает рассеяние результатов из-за наличия только случайной составляющей погрешности, с помощью диаграммы исключают влияние переменной систематической составляющей погрешности. Размах R (рисунок 6.4) определяют как расстояние вдоль оси ординат между двумя линиями, проведенными эквидистантно аппроксимирующей линии через две наиболее удаленные от нее точки, а значение размаха рассчитывают с учетом масштаба точечной диаграммы.
Описанное «исправление» результатов измерений названо частичным, поскольку неизвестное (и потому отсутствующее на диаграмме) истинное значение измеряемой величины искусственно заменяется некоторым «текущим средним значением». «Текущее среднее значение» воспроизводится на диаграмме аппроксимирующей линией, учитывающей влияние переменной части систематической погрешности. Точечная диаграмма результатов многократных измерений физической величины, полученных с помощью одной методики выполнения измерений, не дает представления о значении постоянной систематической погрешности. Диаграмма одной серии не содержит достаточной информации для такого анализа из-за отсутствия «опорного значения», которым можно было бы заменить истинное. Анализ результатов измерений каждой отдельной серии обычно начинают с выявления тенденции изменения результатов измерений и ее качественной оценки. Затем на диаграмму наносят аппроксимирующую линию, соответствующую характеру изменения результатов серии. При анализе диаграмм могут встретиться три варианта: · серия без тенденции изменения результатов; · серия без явно выраженной тенденции изменения результатов; · серия c явной тенденцией изменения результатов. Первый вариант свидетельствует об отсутствии в серии переменной систематической погрешности, диаграмму аппроксимируют прямой линией, параллельной оси абсцисс. Такая аппроксимация свидетельствует о наличии в серии постоянной систематической составляющей погрешности, значение которой оценить невозможно (это может быть значимая либо пренебрежимо малая погрешность). При отсутствии в серии явно выраженной тенденции изменения результатов ее также как и в первом варианте аппроксимируют прямой линией, параллельной оси абсцисс. Для аппроксимации диаграмм третьего варианта по возможности выбирают наклонные прямые линии (линейно прогрессирующее в сторону увеличения или уменьшения изменение результатов) или простейшие кривые линии в виде параболы, дуги окружности, синусоиды. При любой аппроксимации обязательно будут наблюдаться несовпадение результатов и аппроксимирующей линии. Отклонения могут быть вызваны объективными причинами (наличие случайных погрешностей в результатах измерений), или несоответствующей аппроксимацией результатов (неправильный характер и расположение аппроксимирующей линии). Успешность выбора аппроксимирующей зависимости и ее наложения на экспериментальные точки зависит от числа наблюдений и опыта исследователя. Можно проводить аппроксимирующие линии выбранного вида с использованием математических методов (например, метода наименьших квадратов), но точность и достоверность результатов при этом практически не повышается. Поскольку сами погрешности имеют малые значения, а анализ точечных диаграмм основан на допущениях, не обеспечивающих высокий уровень строгости, незначительные погрешности аппроксимации, как правило, имеют второй порядок малости и «погрешности оценки погрешностей» не приводят к существенному искажению результатов исследования. Чаще всего аппроксимация простейшими линиями оказывается достаточно эффективной, но не исключаются и возможные усложнения, например использование параболы или экспоненты для описания участка прогрессирующих данных или наложение синусоиды на наклонную прямую линию. Однако следует иметь в виду, что стремление к высокой точности в подборе вида аппроксимирующей линии не имеет смысла, поскольку не гарантирована строгость соответствия точечной диаграммы допущениям, положенным в основу ее построения. Как показывает опыт анализа точечных диаграмм, незначительные различия при моделировании систематических тенденций разными исследователями при оценивании погрешностей приводят к расхождениям второго порядка малости и не оказывают значимого влияния на результаты таких числовых оценок как среднее квадратическое отклонение. Примерами серий с очевидными тенденциями можно считать точечные диаграммы на рисунке 6.2. На рисунке 6.2 а просматривается тенденция увеличения результатов, которую проще всего аппроксимировать прямой линией. Такая тенденция свидетельствует о наличии в результатах прогрессирующей систематической погрешности линейного характера. Тенденция на рисунке 6.2 б – немонотонная, результаты сначала увеличиваются, затем после достижения максимума уменьшаются, что позволяет предложить аппроксимацию дугой окружности или участком синусоиды. Немонотонное изменение результатов может свидетельствовать о наличии периодической систематической составляющей, однако для уверенного заключения об этом экспериментальных данных явно недостаточно. Зато на рисунке 6.2 в очевидно просматривается периодическая тенденция, которую можно аппроксимировать косинусоидой в 3/4 периода. После проведения аппроксимирующей линии визуально оценивают экстремальные отклонения от этой линии. При наличии одной или нескольких точек, явно выпадающих из общей тенденции, делается отрицательное заключение об их принадлежности исследуемому массиву результатов измерений. Значения, соответствующие этим точкам, оценивают как содержащие грубые погрешности и цензурируют, полагая, что они получены ошибочно. Результаты, подозрительные на наличие промахов, но вызывающие сомнения, оставляют для последующего статистического отбраковывания, которое выходит за пределы анализа точечных диаграмм. Если не наблюдается резко выпадающих из общей тенденции отклонений (результатов с грубыми погрешностями), то через самые удаленные от аппроксимирующей линии точки (максимальные отклонения «в плюс» и «в минус») проводят эквидистанты аппроксимирующей линии. Расстояние между ними вдоль оси ординат в масштабе точечной диаграммы равно размаху отклонений R, и рассматривается как одна из характеристик случайной составляющей погрешности анализируемой серии. Точечная диаграмма и проведенные на ней аппроксимирующая линия и эквидистанты позволяют количественно оценить не только размахи отклонений R' (общий размах результатов измерений) и R (размах частично исправленных результатов измерений), но и другие параметры и характеристики точечной диаграммы, включая изменение прогрессирующей составляющей в серии результатов (приращение а в пределах серии), амплитуду А или удвоенную амплитуду 2А периодической составляющей, а также ее ориентировочный период Т в числах (номерах) наблюдений. Точечная диаграмма в определенных случаях позволяет высказать некоторые суждения не только о сходимости результатов в серии, но и о правильности измерений, поскольку устойчивая тенденция изменения результатов измерений свидетельствует о наличии в них переменной систематической погрешности. Анализ точечных диаграмм позволяет делать логически обоснованные предположения об изменении условий измерений в самом широком понимании этого термина. Например, наличие прогрессирующей тенденции в серии измерений может быть связано с закономерным изменением одной или нескольких влияющих величин, накапливающейся усталостью оператора, накапливающимся воздействием чувствительного элемента на объект измерений. Предположения об износе элементов измерительной цепи средства измерений, как правило, неправомочны, поскольку существенный износ деталей прибора при проведении нескольких десятков или даже сотен измерений может наблюдаться только у особо неудачных конструкций или отдельных бракованных экземпляров средств измерений. Ниже приведены точечные диаграммы (рисунок 6.5), на основании которых проведен анализ результатов измерений каждой из проведенных серий и примеры гипотетических высказываний о возможных причинах характерных особенностей результатов в сериях. Точечная диаграмма на рисунке 6.5 а имеет явно выраженную тенденцию монотонного убывания значений, что свидетельствует о наличии в серии прогрессирующей погрешности (тенденция изменения отражена аппроксимирующей прямой). Результат nj цензурируется как результат с грубой погрешностью – он явно выпадает из общей тенденции, несмотря на то, что его значение близко к значениям в начале серии. Возможные причины появления этого результата – ошибка оператора (промах при манипулировании или при отсчитывании) либо сбой в работе прибора.
Особенностью точечной диаграммы на рисунке 6.5 б является очевидное наличие двух участков 1 и 2, каждый из которых не имеет явно выраженной тенденции изменения результатов. Резкое (скачкообразное) изменение результатов между участками 1 и 2 свидетельствуют о фактическом изменении условий измерений в серии в широком смысле этого термина (возможно, произошло незамеченное изменение влияющей величины, изменилась измеряемая величина, был заменен оператор или случилось некое иное событие), результатом чего стало получение двух серий вместо одной. Скачкообразное изменение результатов позволяет высказать несколько предположений: возможно, был перерыв в работе, за время которого изменились условия измерений (одна или несколько влияющих величин), могло произойти мгновенное изменение настройки (сбой настройки) прибора. В качестве гипотезы можно также рассмотреть возможную «подмену» измеряемой физической величины, то есть фактический переход от одной из номинально одинаковых физических величин к другой, например, из-за незамеченного изменения контрольного сечения (контрольной точки). Точечная диаграмма на рисунке 6.5 в имеет явно выраженную тенденцию немонотонного изменения значений, что может свидетельствовать о наличии в серии периодической (циклической) погрешности. Возможные тенденции изменения результатов отражены двумя аппроксимирующими линиями – сплошной и штриховой, из которых видно, что предполагаемые тенденции примерно вдвое различаются по периоду и амплитудам. Поскольку для достоверных заключений о наличии периодической погрешности, ее амплитуде и предполагаемом периоде наличной информации недостаточно, по возможности следует продолжить серию измерений, при невозможности – высказать предположения, четко оговаривая принятые допущения. На рисунке 6.5 г представлены две аппроксимирующие линии – прямая (сплошная линия) и кривая (штриховая линия). Кривая может быть признана более удачной аппроксимацией, поскольку отклонения от нее в целом меньше, чем от аппроксимирующей прямой. При выполнении нескольких серий многократных измерений одной и той же физической величины с использованием разных методик выполнения измерений весьма эффективно их сопоставление с помощью точечных диаграмм, построенных в одном масштабе. Анализ каждой из серий измерений включает оценку отдельно по каждой серии тенденций изменения результатов измерений и оценки размахов Ri. Сравнительный анализ результатов нескольких серий измерений одной и той же физической величины позволяет оценит
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|