Главная | Обратная связь
МегаЛекции

Комплексирование случайных и «неслучайных» погрешностей





Погрешность измерения D всегда является интегральной погрешностью, которая образуется в результате объединения составляющих погрешностей, что формально записывают следующим образом:

D = D1* D2 *D3 *D4,…*Dn

где * – знак объединения (не сложения), поскольку погрешности разного характера объединяют с использованием разных математических операций.

Оценки составляющих погрешности измерения обычно получают на основе принципа суперпозиции (независимости проявления и действия погрешностей друг от друга), после чего полученные оценки комплексируют.

Комплексирование погрешностей может включать в себя «объединение» случайных и «неслучайных» величин. Если случайные и систематические погрешности будут соизмеримы, их можно оценивать по отдельности, но можно также поставить и решить задачу их комплексирования. Для оценки комплексного влияния на результат измерений значения частных погрешностей следует «объединить». Очевидно, что возможна необходимость объединения случайных составляющих погрешностей и систематических составляющих в разных сочетаниях, для чего применяют различные методы комплексирования.

Состав погрешностей при измерении диаметра номинально цилиндрической поверхности измерительной головкой на стойке в нормальных условиях можно представить в следующем виде:

D = Dприб* Dмер *Dм *Dинт ,

где Dприбпогрешность измерительной головки со стойкой;

Dмерпогрешность концевой меры длины (погрешности блока концевых мер длины), на которую настраивали прибор;

Dм методическая погрешность;

Dинтпогрешность отсчитывания показаний измерительной головки.

Две первые погрешности (Dприби Dмер) являются инструментальными составляющими, третья (Dм) методическая составляющая погрешности, а последняя (Dинт) субъективнаясоставляющая погрешности. Две части инструментальной составляющей погрешности обусловлены методом измерений (поскольку метод сравнения с мерой предусматривает применение меры в явном виде, обязательно присутствует погрешность меры или мер). При малых значениях измерительного перемещения погрешности, вносимые стойкой, пренебрежимо малы по сравнению с погрешностью измерительной головки, следовательно, в качестве первой составляющей достаточно представить основную погрешность измерительной головки.



Если прибор настраивают на блок концевых мер, погрешности блока можно разложить на составляющие, которые включают погрешности каждой меры, входящей в блок, и погрешности притирки мер в блоке.

Методическая погрешность в случае отсутствия упрощений и допущений в ходе измерительного преобразования, может быть обусловлена только некорректной идеализацией объекта измерений. Например, при измерении седлообразной детали в среднем сечении, результат определяется не толщиной детали, а высотой образующей над базовой плоскостью. У детали, годной по размеру, эта составляющая погрешности может достигать половины допуска размера, что с позиций обеспечения точности совершенно недопустимо.

Погрешность «условий» не включена в перечень (ее априори признают пренебрежимо малой, если измерения проводят в нормальных условиях).

Субъективнаясоставляющая погрешности, которая в рассматриваемой МВИ может включать в себя погрешности манипулирования объектом измерений при поиске «точки возврата» и погрешности отсчитывания показаний измерительной головки. Погрешности манипулирования объектом измерений при должной квалификации оператора, как правило, считают пренебрежимо малыми. Погрешности отсчитывания показаний с устройства шкала-стрелка измерительной головки могут включать погрешности из-за параллакса и погрешности округления, либо интерполирования доли деления на глаз. Погрешности из-за параллакса в измерительных головках при соответствующей квалификации оператора можно считать пренебрежимо малыми, а погрешности округления результата в наиболее неблагоприятных случаях (стрелка приблизительно в середине между делениями) могут доходить до половины цены деления прибора. Погрешности интерполирования доли деления «на глаз» у опытного оператора составляют не более 0,1 цены деления прибора, а при неудачных эргономических свойствах прибора не превышают 0,2 цены деления.

Для комплексирования («объединения») погрешностей недостаточно иметь их количественные оценки, поскольку методы комплексирования случайных составляющих и «неслучайных» (систематических) могут существенным образом различаться. Следовательно, при решении конкретной задачи комплексирования необходимо дать качественную оценку каждой из составляющих погрешностей измерения и в соответствии с их характером применять соответствующие методы их «объединения».

Значения систематических составляющих объединяют алгебраически (с учетом знака):

Ds= D s1 + D s2 + (– D s3) +D s4,…

При этом возможна частичная или полная компенсация систематической погрешности за счет составляющих, имеющих противоположные знаки.

Значения некоррелированных случайных составляющих объединяют геометрически (квадратически под корнем квадратным):

_________________

σΣ = √ σ12 + σ22 + σ32 + … ,

где σΣ комплексная оценка средней квадратической погрешности,

σiоценка частной средней квадратической погрешности.

При наличии отличающихся весовых коэффициентов зависимость трансформируется к виду _______________________

σΣ = √ k12σ12 + k22 σ22 + k32σ32 + … ,

где σΣкомплексная оценка средней квадратической погрешности,

σiоценка частной средней квадратической погрешности,

ki весовойкоэффициент частной погрешности.

В случае если оценки погрешностей представлены их предельными значениями с одинаковой доверительной вероятностью, зависимости приобретают вид:

_______________________

Σ = √ k1212 + k2222 + k3232 + … ,

 

где Σкомплексная оценка границы случайной погрешности,

iоценка границы частной случайной погрешности,

ki весовойкоэффициент частной погрешности.

При равенстве весовыхкоэффициентов частных погрешностей зависимость упрощается и записывается в виде

_________________

Σ = √12 +22 +32 + …,

 

где Σкомплексная оценка границы случайной погрешности,

iоценка границы частной случайной погрешности или

При оценках границ погрешностей в обязательном порядке следует указывать значение выбранной доверительной вероятности, которое должно быть одинаковым для всех составляющих.

Для комплексирования систематических и случайных составляющих используют несколько отличающихся подходов, которые можно условно назвать:

· оценка максимального значения интегральной погрешности;

· комплексирование с учетом знаков составляющих погрешностей;

· оценка погрешности с учетом вероятностного характера случайной составляющей.

Поскольку в последующих примерах речь идет об оценке границ погрешностей, для случайной составляющей следует в обязательном порядке указывать значение выбранной доверительной вероятности.

Оценку максимального значения интегральной погрешности определяют, складывая предельные значения погрешностей по модулю

о

D = ± (|D s| + |D|).

 

Следует отметить, что этот вариант является «перестраховочным», поскольку предусматривает наихудшее сочетание систематической составляющей с предельным значением случайной, вероятность появления которого не очень велика.

Комплексирование с учетом знаков составляющих погрешностей осуществляют в тех случаях, когда неисключенный остаток систематической составляющей имеет фиксированный знак, например, погрешности формы и расположения поверхностей всегда являются существенно положительными величинами. В таком случае может быть использована зависимость вида

о

D = D s ± D,

 

которая пригодна при симметричном распределении случайной составляющей погрешности.

Для оценки интегральной погрешности с учетом вероятностного характера случайной составляющей используют «понижающий коэффициент», значения которого могут изменяться в довольно широких пределах. Традиционно принимаемые значения этого коэффициента (0,7…0,8). Тогда при значении «понижающего коэффициента» 0,7 возможный вид зависимости

о

D = ± 0,7(|D s| + |D|).

 

Кроме расчета с использованием предложенных зависимостей, объединение комплексной случайной погрешности, представленной средним квадратическим значением, с интегральной неисключенной систематической погрешностью, представленной предельным значением (границей) можно осуществлять в соответствии с ГОСТ 8.207

______________

σΣ = √ σ2случ +D s2 /3 .

Зависимостью можно пользоваться в случае, когда отношение оценок неисключенной систематической и случайной составляющих находится в пределах

0,8 < D s /σслуч < 8,0.

Приведенная зависимость позволяет получить комплексную оценку «средней квадратической погрешности», объединяющую собственно случайную составляющую и квазислучайную составляющую, возникающую при рандомизации неисключенных остатков систематических погрешностей. При этом для аппроксимации распределения неисключенных остатков систематических погрешностей использовано равновероятное распределение как наихудший из возможных вариантов.

В описание результата измерений при таких расчетах обязательно включают значение выбранной доверительной вероятности.

 





Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:
©2015- 2021 megalektsii.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.