Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Момент силы относительно оси




Проекция момента силы относительно точки на некоторую ось, проходящую через эту точку называется моментов силы относительно оси.

Момент силы относительно оси вычисляется как момент проекции силы F ⃗ на плоскость Π, перпендикулярную оси, относительно точки пересечения оси с плоскостью Π:

Mz (F ⃗)= Mz (F ⃗ Π)=± F Π h.

Знак момента определяется направлением вращения, которое стремится придать телу сила F ⃗ Π. Если, глядя по направлению оси Oz сила вращает тело по часовой стрелке, то момент берется со знаком ``плюс'', иначе - ``минус''.

 

Момент импульса – относительно точки и оси.

Моментом импульса материальной точки относительно некоторой точки называется векторная величина, равная векторному произведению радиуса-вектора на импульс материальной точки (рис. 7а):

.

Моментом импульса системы материальных точек называется геометрическая сумма моментов импульсов точек, составляющих систему:

.

Моментом импульса материальной точки относительно оси Z называется скалярная величина, равная проекции момента импульса относительно произвольной точки, лежащей на оси Z, на эту ось. Аналогично моменту силы относительно оси, момент импульса относительно оси Z

где pt – проекция импульса на направление вектора , направленного по касательной к окружности радиусом, проведенной через материальную точку перпендикулярно оси вращения (рис. 7б). Направление вектора образует с осью Z правовинтовую систему.
Момент импульса тела относительно оси вращения

LZ = IZ×wZ,

где IZ – момент инерции тела относительно оси Z, wZ – проекция угловой скорости тела на ось Z. Для однородного тела, вращающегося относительно оси симметрии:

Закон динамики вращательного движения твердого тела относительно оси.

Основной закон динамики вращательного движения:

Скорость изменения момента импульса тела относительно оси равна результирующему моменту внешних сил относительно этой же оси (проекция углового ускорения на ось пропорциональна результирующему моменту внешних сил относительно оси и обратно пропорциональна моменту инерции тела относительно этой же оси):

Из законов динамики поступательного и вращательного движений следует условие равновесия тел:

 

Гармонический осциллятор.

Гармонический осциллятор (в классической механике) — система, которая при смещении из положения равновесия испытывает действие возвращающей силы F, пропорциональной смещению x (согласно закону Гука):

где k — коэффициент жёсткости системы.

Если F — единственная сила, действующая на систему, то систему называют простым или консервативным гармоническим осциллятором. Свободные колебания такой системы представляют собой периодическое движение около положения равновесия (гармонические колебания). Частота и амплитуда при этом постоянны, причём частота не зависит от амплитуды.

Если имеется ещё и сила трения (затухание), пропорциональная скорости движения (вязкое трение), то такую систему называют затухающим или диссипативным осциллятором. Если трение не слишком велико, то система совершает почти периодическое движение — синусоидальные колебания с постоянной частотой и экспоненциально убывающей амплитудой. Частота свободных колебаний затухающего осциллятора оказывается несколько ниже, чем у аналогичного осциллятора без трения.

Если осциллятор предоставлен сам себе, то говорят, что он совершает свободные колебания. Если же присутствует внешняя сила (зависящая от времени), то говорят, что осциллятор испытывает вынужденные колебания.

Механическими примерами гармонического осциллятора являются математический маятник (с малыми углами отклонения), груз на пружине, торсионный маятник и акустические системы.

 

Физический маятник.

Физический маятник — осциллятор, представляющий собой твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела.

· — угол отклонения маятника от равновесия;

· — начальный угол отклонения маятника;

· — масса маятника;

· — расстояние от точки подвеса до центра тяжести маятника;

· — радиус инерции относительно оси, проходящей через центр тяжести.

· — ускорение свободного падения.

Момент инерции относительно оси, проходящей через точку подвеса:

.

Пренебрегая сопротивлением среды, дифференциальное уравнение колебаний физического маятника в поле силы тяжести записывается следующим образом:

.

Полагая , предыдущее уравнение можно переписать в виде:

.

Последнее уравнение аналогично уравнению колебаний математического маятника длиной . Величина называется приведённой длиной физического маятника.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...