Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Тема 6: Моделирование рядов распределения.

§1. Фактическое и теоретическое распределение

§2. Кривая нормального распределения.

§3. Проверка гипотезы о нормальном распределении.

§4. Критерии согласия: Пирсона, Романовского, Колмогорова.

§5. Практическое значение моделирования рядов распределения.

 

Фактическое и теоретическое распределение

Одна из важнейших целей изучения рядов распределения состоит в том, чтобы выявить закономерность распределения и определить ее характер. Закономерности распределения наиболее отчетливо проявляются только при большом количестве наблюдений.

Фактическое распределение может быть изображено графически с помощью кривой распределения – графически изображается в виде непрерывной линии изменения частот в вариационном ряду функционально связанного с изменением варианта.

Под теоретической кривой распределения понимается кривая данного типа распределения в общем виде исключающего влияние случайных для закономерности факторов.

Теоретическое распределение может быть выражено аналитической формулой которая называется аналитической формулой. Наиболее распространенным является нормальное распространение.

Кривая нормального распределения.

Закон нормального распределения:

;

у – ордината нормального распределения

t – нормированное отклонение.

; е=2,7218; xi варианты вариационного ряда;  - среднее;

Свойства:

Функция нормального распределения – четная, т.е. f(t)=f(-t), . Функция нормального распределения полностью определяется  и СКО.

Проверка гипотезы о нормальном распределении.

Причиной частого обращения к закону распределения является то, что зависимость возникающая в результате действия множества случайных причин ни одна из которых не является преобладающей. Если в вариационном ряду рассчитали Мо=Ме, то это может указывать на близость к нормальному распределению. Наиболее точная проверка соответствия нормальному закону производится с помощью специальных критериев.

Критерии согласия: Пирсона, Романовского, Колмогорова.

Критерий Пирсона.

- теоретическая частота

- эмпирическая частота

Методика расчета теоретических частот.

1. Определяется среднее арифметическое и  по интервальному вариационному ряду, считается t по каждому интервалу.

2. Находим значение плотности вероятности для нормированного закона распределения.  СТР.49

3. Находим теоретическую частоту.

l – длина интервала

 - сумма эмпирических частот

- плотность вероятности

округлить значение до целых

4. Расчет коэффициента Пирсона

5. табличное значение

d.f. – количество интервалов – 3

d.f. – количество степеней свободы.

6. если > , то распределение не является нормальным, т.е. гипотеза о нормальном распределении отменяется. Если < , то распределение является нормальным.

Критерий Романовского.

 - критерий Пирсона расчетный;

- число степеней.

Если С<3, то распределение близко к нормальному.

Критерий Колмогорова

, D – максимальное значение между накопленными эмпирическими и теоретическими частотами. Необходимое условие для использования Колмогорова: Число наблюдений более 100. По специальной таблице вероятностей  с которой  можно утверждать, что данное распределение является нормальным.

Практическое значение моделирования рядов распределения.

1. возможность применить к эмпирическому распределению законов нормального распределения.

2. возможность использования правила 3х сигм.

3. Возможность избежать дополнительных трудоемких и затратных расчетов, по исследованию совокупности зная, что распределение нормальное.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...