Взаимодействие двух параллельных прямых проводников с токами
Два параллельных бесконечно длинных и тонких проводника с токами I1 и I2, расположенные на расстоянии а друг от друга, взаимодействуют с силой на единицу длины
Два параллельных бесконечно длинных и тонких проводника с токами I1 и I2, расположенные на расстоянии а друг от друга, взаимодействуют с силой на единицу длины
Это вытекает из закона Ампера. Причем, когда токи в проводниках параллельны, проводники притягиваются, а когда токи в проводниках антипараллельны - проводники отталкиваются.
Рис. 2.5
Рассмотрим задачу (рис. 2.5). Первый проводник находится во внешнем поле, созданном вторым проводником. Тогда
или
.
Направления и взаимно перпендикулярны и
,
и, окончательно:
или
.
Пусть теперь второй проводник находится в поле, созданном первым проводником. Рассуждая по такой же схеме, получим:
или
,
.
13.Циркуляция вектора магнитной индукции
|
|
|
Возьмем контур l (рис. 2.8), охватывающий прямой ток I, и вычислим для него циркуляцию вектора магнитной индукции , т.е. .
Рис. 2.8
Вначале рассмотрим случай, когда контур лежит в плоскости перпендикулярно потоку (ток I направлен за чертеж). В каждой точке контура вектор направлен по касательной к окружности, проходящей через эту точку (линии прямого тока – окружности).
Воспользуемся свойствами скалярного произведения векторов.
где – проекция d l на вектор , но , где R – расстояние от прямой тока I до d l.
.
Отсюда
| ,
| (2.6.1)
|
| это теорема о циркуляции вектора : циркуляция вектора магнитной индукции равна току, охваченному контуром, умноженному на магнитную постоянную.
Иначе обстоит дело, если ток не охватывается контуром (рис. 2.9).
При обходе радиальная прямая поворачивается сначала в одном направлении (1–2), а потом в другом (2–1). Поэтому , и следовательно
| ,
| (2.6.2)
|
|
Рис. 2.9
Итак, , где I – ток, охваченный контуром L.
Эта формула справедлива и для тока произвольной формы, и для контура произвольной формы.
Если контур охватывает несколько токов, то
| ,
| (2.6.3)
|
| т.е. циркуляция вектора равна алгебраической сумме токов, охваченных контуром произвольной формы.
Теорема о циркуляции вектора индукции магнитного поля позволяет легко рассчитать величину В от бесконечного проводника с током (рис. 2.10): .
Рис. 2.10
Итак, циркуляция вектора магнитной индукции отлична от нуля, если контур охватывает ток (сравните с циркуляцией вектора : ).
Такие поля, называются вихревыми или соленоидальными.
Магнитному полю нельзя приписывать потенциал, как электрическому полю. Этот потенциал не был бы однозначным: после каждого обхода по контуру он получал бы приращение .
Линии напряженности электрического поля начинаются и заканчиваются на зарядах. А магнитных зарядов в природе нет. Опыт показывает, что линии всегда замкнуты (см. рис. 1.2. и 1.7). Поэтому теорема Гаусса для вектора магнитной индукции записывается так:
|
Магнитное поле соленоида.
Магнитное поле соленоида представляет собой суперпозицию отдельных полей, которые создаются каждым витком в отдельности. Через все витки протекает один и тот же ток. Оси всех витков лежат на одной лини. Соленоид представляет собой катушку индуктивности, имеющую цилиндрическую форму. Эта катушка намотана из проводящей проволоки. При этом витки уложены плотно друг к другу и имеют одном направление. При этом считается, что длинна катушки значительно превышает диаметр витков.
Давайте рассмотрим магнитную индукцию, создаваемую каждым витком. Видно, что индукция внутри каждого витка направлена в одну и ту же сторону. Если смотреть в центр витка, то индукция от его краев будет складываться. При этом индукция магнитного поля между двух соседних витков направлена встречно. Так как она создана одним и тем же током то она компенсируется.
Рисунок 1 — Поле создаваемое отдельными витками соленоида
Если витки соленоида намотаны достаточно плотно, то между всеми витками встречное поле будет компенсировано, а внутри витков произойдет сложение отдельных поле в одно общее. Линии этого поля будут проходить внутри соленоида, и охватывать его снаружи.
Если исследовать магнитное поле внутри соленоида любыми способами, например, с помощью железных опилок то можно сделать вывод, что оно однородно. Лини магнитного поля в этой области представляют собой параллельные прямые. Мало того что они параллельны сами себе но они еще параллельны оси соленоида. Выходя за приделы соленоида, они искривляются и замыкаются снаружи катушки.
Рисунок 2 — Поле создаваемое соленоидом
Из рисунка видно, что поле создаваемое соленоидом похоже на поле, которое создает постоянный стержневой магнит. На одном конце силовые линии выходят из соленоида и этот конец аналогичен северному полюсу постоянного магнита. А в другой они входят, и этот конец соответствует южному полюсу. Отличие же заключается в том, что поле присутствует и внутри соленоида. И если провести опыт с железными опилками, то они втянутся в пространство между витками.
Но если внутрь соленоида вставить деревянный сердечник либо сердечник из любого другого немагнитного материала, то при проведении опыта с железной стружкой картина поля постоянного магнита и соленоида будет идентична. Так как деревянный сердечник не исказит силовые лини, но при этом не даст проникнуть опилкам внутрь катушки.
Рисунок 3 — Картина поля постоянного стержневого магнита
Для определения полюсов соленоида можно использовать несколько методов. Например, самый простой, использовать магнитную стрелку. Она притянется к противоположному полюсу магнита. Если же известно направление тока в витке полюсы можно определить при помощи правила правого винта. Если вращать головку правого винта в направлении тока, то поступательное движение укажет направление поля в соленоиде. А зная, что поле направлено от северного полюса к южному и можно определить, где какой полюс находится.
Чтобы найти модуль магнитной индукции соленоида состоящего из одного слоя можно воспользоваться формулой.
Воспользуйтесь поиском по сайту: