Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Интеграция гликолиза и глюконеогенеза: цикл Кори




Хотя в пределах конкретной ткани, например печени, преобла­дает движение углеродных атомов в направлении либо гликоли­за, либо глюконеогенеза, в организме в целом гликолиз и глю­конеогенез протекают, как правило, одновременно в разных тка­нях. Печень обнаруживает глюконеогенную активность, начиная примерно через 3 ч после приема содержащей углеводы пищи и сохраняя эту активность до следующего приема пищи. С дру­гой стороны, форменные элементы крови, покоящаяся мышца и гораздо в большей степени работающая мышца непрерывно про­дуцируют лактат. Сочетанная активность глюконеогенеза и гли­колиза, обусловливающая кругооборот углеродных скелетов глю­козы и лактата между печенью и мышцей, известна под назва­нием цикла Кори (рис. 10—5). Глюкоза высвобождается печенью в кровоток и поглощается мышечной тканью. В мышце глюкоза подвергается гликолизу и ее углеродный скелет высво­бождается в кровь в виде лактата и пирувата. Печень экстраги­рует лактат и пируват из крови и в ходе глюконеогенеза вновь превращает эти субстраты в глюкозу. Подсчитано, что повторный кругооборот углеродных скелетов между лактатом и глюкозой составляет 20% от общего кругооборота каждого из этих субстра­тов.

Цикл Кори не может привести к образованию новых молекул глюкозы. Однако он является механизмом, с помощью которого конечные продукты гликолиза могут вступать на путь анаболизма, а не накапливаться в крови или подвергаться дальнейшему окислению. Описан также аналогичный цикл между глюкозой и аланином (глюкозоаланиновый цикл) [10], который будет про­анализирован в разделе, посвященном метаболизму аминокислот.

Несмотря на быстрый кругооборот глюкозы через цикл Кори, уровень лактата и пирувата в крови в норме не достигает 1 мМ. Однако в условиях повышенного анаэробного гликолиза, будь то вследствие физиологических (например, физическая работа) или патологических (сосудистый коллапс при гиповолемии, сепсисе или кардиогенном шоке) стимулов, происходит накопление лак­тата. Лактат накапливается и при нарушении цикла Кори под влиянием угнетающих глюконеогенез веществ, таких, как этанол или фруктоза. Антиглюконеогенный эффект этанола обусловлен значительным увеличением отношения НАД-Н/НАД вследствие метаболизма спирта под действием фермента алкогольдегидрогеназы. В результате накопления избыточного количества НАД•Н ингибируется превращение лактата в пируват. Более того, пиру­ват, образующийся при дезаминировании аланина, также быстро превращается в лактат. В отличие от этого глюконеогенез из глицерина, вступающий на этот путь на уровне триозофосфатов (см. рис. 10—4), этанолом не ингибируется.

 

 

Рис. 10—5. Цикл Кори (лактат ® глюкоза) и глюкозоаланиновый цикл. В обоих циклах глюкоза поглощается мышцей и превращает­ся в пируват и лактат. Часть пирувата в мыш­це подвергается аминированию с образовани­ем аланина. Образую­щиеся из глюкозы лак­тат и аланин в печени вновь превращаются в глюкозу.

 

 

Глюконеогенез — не единственный путь метаболизма для лак­тата, высвобождаемого в кровоток. В печени и гораздо в большей степени в сердечной мышце и почках лактат подвергается окон­чательному окислению в СО2.

 

ЦИКЛ ТРИКАРБОНОВЫХ КИСЛОТ

 

Ферментативный процесс, с помощью которого ткани в аэробных условиях утилизируют кислород и выделяют двуокись углерода (т. е. осуществляют клеточное дыхание), называется циклом трикарбоновых кислот (ТКК), или циклом Кребса. Эта последо­вательность метаболических превращений представляет собой об­щий конечный путь аэробного окисления и образования СО2 из углеводов, жирных кислот и аминокислот. Ферменты, катализи­рующие цикл ТКК, расположены в митохондриях. В этих орга­неллах они находятся в тесной связи с дыхательной цепью — последовательностью белков, которая обеспечивает сопряжение энергии, высвобождающейся в различных окислительных реак­циях цикла ТКК, с образованием АТФ, т. е. процесс окислитель­ного фосфорилирования. Таким образом, с количественной сто­роны, цикл ТКК является наиболее важным путем утилизации энергии, запасенной в различных субстратах метаболизма.

Реакцией, связывающей гликолиз с циклом ТКК, служит окислительное декарбоксилирование пирувата до ацетата и кон­денсация последнего с коферментом А, в результате чего обра­зуется ацетил-СоА. Этот процесс катализируется пируватдегид­рогеназой. Активность ее снижается в присутствии высоких кон­центраций АТФ. Напротив, при снижении уровня АТФ окисление пирувата ускоряется. Предполагается, что пируват­дегидрогеназа является регуляторным пунктом, через ко­торый повышение окисления свободных жирных кислот препятст­вует окислению глюкозы (см. далее: цикл глюкоза—жирные кис- лоты). Кроме того, ингибиторный эффект лейцина на окисление глюкозы в мышечной ткани также относят за счет торможения пируватдегидрогеназы [11].

Все энергетические субстраты поступают в цикл ТКК в фор­ме метаболического интермедиата — ацетил-СоА. Конечными про­дуктами являются две молекулы СО2, Н2О и кофермент А. Таким путем происходит окончательное окисление углеродного скелета ацетил-СоА и его предшественников: глюкозы, жирных и амино­кислот. Циклический характер этого пути определяется тем, что субстрат, соединяющийся с ацетил-СоА в первой реакции цик­ла — оксалацетат, восстанавливается в последней реакции. Про­дуктом этой первой реакции является цитрат — трикарбоновая кислота, что и дало наименование всему циклу — цикл трикарбоновых кислот, или цикл лимонной кислоты.

Общая активность цикла ТКК определяется присутствием АТФ и субстратов, а также активностью ферментов и гормональной средой. Эти контролирующие влияния в значительной мере взаимозависимы. Например, при крайне низком уровне инсулина ферменты глюконеогенеза резко активируются, вследствие чего использование оксалацетата в этом процессе увеличивается в до­статочной степени, чтобы ограничить активность цикла ТКК. Главной детерминантой ферментативной активности является присутствие АТФ, АДФ и АМФ. В условиях уменьшенного ко­личества АТФ и повышения уровня АДФ активность цитратсинтетазы (фермент, катализирующий первую стадию цикла — кон­денсацию ацетил-СоА и оксалацетата) и изоцитратдегидрогеназы увеличивается. Наоборот, при повышении уровня АТФ и умень­шении содержания АДФ эти ферменты ингибируются. Вследствие этого использование АТФ при мышечном сокращении ускоряет окисление глюкозы, тогда как в состоянии покоя окисление глю­козы мышцей практически равно нулю.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...