Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Прямая линия на плоскости.




1.1. Уравнение линии на плоскости.

 

Положение точки на плоскости определяется двумя координатами.

Прямоугольная декартова система координат на плоскости представляет из себя две перпендикулярные прямые, снабженные масштабами и направлениями. Такие прямые называются координатными осями - осью абсцисс Ох и осью ординат Оy.

Пусть на плоскости заданы декартова прямоугольная система координат и некоторая линия L. Рассмотрим уравнение F (x,y)=0 (или y = j (x)), связывающее две переменные величины x и y. Это уравнение называется уравнением линии L (относительно заданной системы координат), если 1) ему удовлетворяют координаты (x,y) любой точки линии L и 2) ему не удовлетворяют координаты ни одной точки, не лежащей на линии L.

1.2. Различные виды уравнения прямой.

 

В декартовых координатах каждая прямая определяется уравнением первой степени с двумя переменными и обратно: каждое уравнение первой степени

Ax + By + C = 0 (1)

(где А и В не равны нулю одновременно) определяет некоторую прямую. Это уравнение называется общим уравнением прямой. Возможны следующие случаи:

1) С = 0, уравнение имеет вид Ax + By = 0 и определяет прямую, проходящую через начало координат;

2) В = 0 (А ¹ 0), уравнение принимает вид Ax + C = 0 или x = - прямая, параллельная оси Oy (в частности, x = 0 - уравнение самой оси Oy);

3) А = 0 (В ¹ 0), уравнение принимает вид Вy + C = 0 или y = - прямая, параллельная оси Ox (в частности, y = 0 - уравнение самой оси Ox).

 
M
y
y
Рис.1
Замечание. Для построения прямой, заданной общим уравнением, достаточно указать любые две ее точки.

N
Пример 1. Определить точки пересечения прямой 3 x - 4 y + 12= 0 с координатными осями и построить эту прямую.

 
-4
x
Решение. Полагая x = 0, находим y = 3; таким образом, получена точка М (0,3) пересечения

прямой с осью Oy. При y = 0 значение x = -4 и N (-4,0) - точка пересечения прямой с осью Ox. Осталось провести прямую через точки М и N (рис. 1). ■

Если ни один из коэффициентов уравнения (1) не равен нулю, то его можно преобразовать к виду

 

, (2)

где a = и b = есть величины отрезков, которые отсекает прямая на координатных осях. Уравнение (2) называется уравнением прямой «в отрезках». Эта форма уравнения прямой особенно удобна для построения прямой на чертеже. Так, в предыдущем примере, после записи уравнения прямой в виде , легко определить координаты точек М и N.

Рассмотрим на плоскости xOy прямую, не параллельную оси Oy; при движении вдоль такой прямой в одном направлении x возрастает, а в другом убывает. Направление, отвечающее возрастанию x, назовем положительным. Угол a, на который надо повернуть положительную полуось Оx, чтобы совместить ее с положительным направлением данной прямой, называют углом наклона прямой к оси абсцисс. При этом угол наклона считается положительным, если положительную полуось Оx надо поворачивать против часовой стрелки, и отрицательным в противном случае, так что < a < . Можно считать, что для прямой, параллельной оси Оy, угол наклона a = .

Угловым коэффициентом прямой k называется тангенс угла наклона прямой к оси Оx:

k = .

Замечание. Прямая, параллельная оси Оy, не имеет углового коэффициента, т.к. не существует; или можно считать, что ее угловой коэффициент равен бесконечности, т.к. при a ® ® ¥.

Если прямая не параллельна оси Оy, то ее уравнение можно записать в виде

y = kx+b. (3)

Это уравнение называется уравнением прямой с угловым коэффициентом; k - угловой коэффициент; b - величина отрезка, который отсекает прямая на оси Оy, считая от начала координат. В частном случае, при b = 0 прямая y = kx проходит через начало координат.

Из общего уравнения прямой (1) при В¹ 0 можно получить уравнение y = , т.е. уравнение прямой с угловым коэффициентом k = .

Пример 2. Найти угол наклона к оси Оx прямой, заданной общим уравнением 2 x + 5 y + 17= 0.

Решение. Выразим из данного уравнения y. Получим уравнение прямой с угловым коэффициентом y = . Откуда, k = = -0,4, так что = -0,4. Искомый угол a = . ■

Рассмотрим далее решение некоторых типовых задач.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...