Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Пустое и универсальное множества




Определение 1.1. В теории множеств отдельно вводится множество, которое не содержит ни одного элемента. Такое множество называется пустым и обозначается символом Æ.

В любой конкретной задаче приходится иметь дело только с подмножествами некоторого, фиксированного для данной задачи, множества. Его принято называть универсальным и обозначать символом U.

Например, при сборке некоторого изделия универсальным множеством естественно назвать множество всех деталей и сборочных элементов, из которых это изделие состоит.

Если мы рассматриваем множества, связанные с какими-нибудь фигурами на плоскости, то в качестве универсального множества можно выбрать множество всех точек плоскости.

Определение 1.2. Два множества A и B называются равными (A = B), если они состоят из одних и тех же элементов. Поэтому несуществен порядок записи в фигурных скобках элементов множества, задаваемого списком, т.е. { a, b, c } = { a, c, b }.

Определение 1.3. Множество A называется подмножеством множества B, если любой элемент множества A принадлежит множеству B. При этом пишут A Ì B, где " Ì " есть знак вложения подмножества. Из определения следует, что для любого множества A справедливы, как минимум, два вложения A Ì A и A Ì U.

Определение 1.4. Если A Ì B и A ¹ B, A ¹ Æ, то A называется

собственным подмножеством множества B. В этом случае B содержит хотя бы один элемент, не принадлежащий A.

В теории множеств, по определению, полагают, что пустое множество является подмножеством любого множества: Æ ÌA.

Пустое множество и само множество A называются несобственными подмножествами множества A.

При графическом изображении множеств удобно использовать диаграммы Венна, на которых универсальное множество обычно представляют в виде прямоугольника, а остальные множества в виде овалов, заключенных внутри этого прямоугольника (рис 1.1).

Определение 1.5. Объединением множеств A и B (обозначение A ÈB) называется множество элементов x таких, что x принадлежит хотя бы одному из двух множеств A или B (рис 1.2). Символически это можно записать следующим образом:

AÈ B = {x|x Î A или x Î B}.

Определение 1.6. Пересечением множеств A и B (обозначение A ÈB) называется множество, состоящее из элементов x, которые принадлежат и множеству A и множеству B (рис. 1.3):

AÈ B = { x|x Î A и x Î B}.

Определение 1.7. Разностью множеств A и B называется множество всех тех элементов множества A, которые не принадлежат множеству B (рис. 1.4):

A\B = { x|x Î A и x Î B}.

Определение 1.8. Симметрической разностью множеств A и B называется множество A D B = (A\B) È (B\A) (рис. 1.5).

Определение 1.9. Абсолютным дополнением множества A называется множество всех элементов, не принадлежащих A, т.е. множество A = U\A, где U - универсальное множество (рис. 1.6).

В дальнейшем вместо термина "абсолютное дополнение" мы будем употреблять термин "дополнение".

Пример 1.1. Если U = { a, b, c, d, e, f, g, h }, A = { c, d, e }, B = { a, c, e, f, h }, то

A ÈB = { a, c, d, e, f, h }, A ÇB = { c, e }, A\B = {d},

 

 

A D B = { a, d, f, h }, A   = { a, b, f, g, h }.

 

Свойства операций

Для любых множеств A,B,C выполняются следующие тождества:

1. A È B = B ÈA, AÇ B = BÇ A

(коммутативность объединения и пересечения);

2. A È (B ÈC) = (A È B) ÈC, A Ç (B ÇC) = (AÇ B) Ç C

(ассоциативность объединения и пересечения);

3. A Ç (B ÈC) = (A ÇB) È (AÇC),

A È (BÇ C) = (A ÈB) Ç (A ÈC)

(дистрибутивность);

Функция

Понятие функции

Пусть заданы два множества Х и Y. Если каждому элементу х Х поставлен в соответствие один и только один элемент у У, обозначаемый f(х), и если каждый элемент у У при этом оказывается поставлен в соответствие хотя бы одному элементу х Х, то говорится, что на множестве Х задана однозначная функция у = f(х). Множество Х называется областью ее определения, а множество Y - множество ее значений. Элемент х Х называется аргументом или независимой переменной, а элементы у Y - значениями функции, или зависимой переменной..

Рис. 2.1.

Элементы х и у рассматриваемых множеств могут иметь совершенно произвольную природу. Если значениями функции являются не числа, а другие элементы, часто вместо слова “функция” употребляют слово “отображение”.

Для того, чтобы задать функцию f, надо знать:

1. Х - область определения (существования);

2. Y - область значений;

3. Закон соответствия, по которому определяется элемент у Y, соответствующий х Х.

Способы задания функций.

1. Если функция задана выражением при помощи формулы, то говорят, что она задана аналитически, Для этого используется некоторый запас изученных и специально обозначенных функций, алгебраические действия и предельный переход.

Например, .

Здесь - это совокупность действий, которые нужно выполнить в определенном порядке над значениями аргумента х, чтобы получить соответствующее значение функции y (или, то же самое, ).

Примеры:

1.

 

2. Функция Дирихле:

3.

2. Функцию можно задавать таблично, т.е. для некоторых значений х указать соответствующие значения переменной y.

 

X x1 x2 ... xi ... xn
Y y1 y2 ... yi ... yn

 

Данные такой таблицы могут быть получены как экспериментально, так и с помощью математических расчетов.

Примерами табличного задания функций могут быть: логарифмические таблицы, таблицы тригонометрических функций.

3. Аналитический и табличный способы задания функций страдают отсутствием наглядности.

(*)

Рис. 2.3.

 

Графический способ задания функции - это геометрическое место точек на плоскости с координатами .

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...