Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Равновесие замкнутых открытых систем




При определенных параметрах обмена энергией и/или веществами в замкнутой открытой системе за счет этого обмена упорядоченное состояние и неравномерное распределение энергии может сохраняться неопределенно долго. Рассмотрим тот же пример с неравномерно нагретым предметом только в качестве не изолированной, а открытой системы. Представим себе, что в силу этой открытости, к более теплой части предмета постоянно поступает определенное количество тепла, а вся система в целом отдает определенное количество тепла в окружающую среду. Допустим, что количество тепла, получаемое системой, эквивалентно тепловой энергии, переходящей от теплой части предмета к холодной, и количеству энергии, отдаваемому всей системой среде. В этих условиях, несмотря на постоянный переход энергии внутри системы от теплой части к холодной, неравномерное распределение энергии в системе будет сохраняться, а, значит, сохранится и работоспособность системы. (По сути, мы получили упрощенную схему тепловой машины, например паровой, в которой непрерывно сжигаемое топливо подает в систему новые порции тепла, а выбрасываемый в окружающую среду отработанный пар отдает свое тепло этой среде.) При этом, поскольку переход энергии от теплой части системы (предмета) к холодной не прекращается, также непрерывно идет и процесс выравнивания распределения энергии и возрастания энтропии в системе. Вот только за счет обмена тепловой энергией с внешней средой также непрерывно идет процесс восстановления неравномерного распределения энергии и уменьшения энтропии. Если процессы увеличения и уменьшения энтропии в системе будут эквивалентны, общая энтропия системы изменяться не будет, и степень упорядоченности системы не изменится. Такое состояние системы, в котором суммарное изменение энтропии равно нулю, называется стационарным и является неустойчивым, так как изменение любого из параметров обмена энергией со средой приведет к изменению распределения энергии в системе.

Самым устойчивым будет состояние при минимальном значении термодинамических функций. Иными словами. тела должны прийти в тепловое равновесие. Поэтому вода не может все время быть плавящимся льдом или все вре­мя кипеть, хотя именно в этих температурных точках на­растает ее энтропия. Зато между точками кипения и плав­ления находится жидкое состояние, которое обладает дос­таточной беспорядочностью (в сравнении с льдом) и не стре­мится к большему беспорядку в конкретных условиях.

Так же, отапливая зимой комнату, мы не увеличиваем внутреннюю энергию помещения, которая постоянно уходит в процессе теплового обмена с наружной средой, а поддерживаем постоянную температуру, то есть неустойчивое состояние. Энтропия обогреваемого помещения не максимальна и не постоянна, но ее постоянное изменение во времени равно нулю. Вернемся к примеру с двумя соединенными емкостями, заполненными смесью азота и водорода и подогреем одну емкость и охладим другую. В результате, из-за разницы температур, в одной емкости будет больше водорода, а в другой азота. В данном случае мы имеем дело с диссипативным процессом, который, с одной стороны, творит беспорядок и одновременно, с другой, потоком тепла создает порядок: водород в одной емкости, азот — в другой. Порядок и беспорядок, таким образом, оказываются тесно связанными — один включает в себя другой. И эту констатацию мы можем оценить как главное изменение, которое происходит в нашем восприятии универсума сегодня.

Изменение параметров обмена энергией со средой приведет к изменению распределения энергии в системе и выходу системы из сложившегося состояния равновесия. Система, выведенная внешним воздействием из состояния с минимальным производством энтропии, стимулирует развитие процессов, направленных на ослабление внешнего воздействия и восстановление состояния с минимально возможной при данных новых условиях энтропией. Структурная особенность системы, позволяющая сохранять и восстанавливать свою упорядоченность в определенном диапазоне меняющихся условий, называется аттрактором, а само равновесие динамическим. Изменение внешних условий может смещать динамическое равновесие как в сторону процессов уменьшения энтропии, так и в сторону увеличения энтропии.

Допустим, мы повышаем температуру одного сосуда, не изменяя температуры второго. Соотношение молекул разных газов в каждом сосуде изменится, но неравномерность распределения этих газов между сосудами будет сохраняться, не смотря на общее увеличение энтропии в системе. В то же время, повышая температуру одного сосуда и одновременно понижая температуру другого, мы можем добиться максимального разделения смеси газов, то есть состояния с минимальной энтропией в системе. Однако это состояние будет чрезвычайно не устойчивым, так как малейшее смещение разности температур приведет к уменьшению упорядоченности в распределении молекул. Достигаемое в рамках аттрактора новое неустойчивое равновесие, однако, неизбежно ведет к общему увеличению энтропии или в самой системе (увеличение порядка в одной части системы сопровождается соответствующим увеличением беспорядка в другой части системы) или в надсистеме, являющейся для изучаемой системы внешней средой. В примере с двумя сосудами мы не можем, нагревая один, не повышать одновременно температуру окружающего систему воздуха, конвекция которого рано или поздно нарушит эквивалентность охлаждения второго сосуда нагреву первого. То есть, повышая упорядоченность созданной нами системы, мы увеличили энтропию (беспорядок) в окружающей среде (надсистеме), что становится фактором, выводящим нашу систему из стационарного состояния.

Человечество — это живая динамическая система, часть биосферы. А любая система потенциально содержит в себе как порядок, так и его противоположность - беспорядок. Че­ловеческое сообщество, развиваясь, снижает меру своей не­упорядоченности через постепенные реформы или быстрые революции, достигая все большей организации, регла­ментации и управляемости. Казалось бы, это очень хорошо. Да, если бы не один вопрос: а куда же девался внутренний беспорядок?

Об этом редко кто задумывается, а зря. Дело в том, что бес­порядок, отрицательная сторона деятельности людей по улучшению своей жизни, не исчезает «в никуда», а просто пе­рекладывается в другое место и, представьте себе, может вер­нуться обратно с совершенно неожиданной стороны. Вот небольшой бытовой пример. Ваша квартира сияет чистотой, вы навели в ней полный порядок. А беспорядок? Вы его выки­нули: мусор, грязь и пыль — на помойку, мыльную воду и хи­мические чистящие средства — под ближайший куст или, че­рез канализацию, в реку. А тараканов прогнали к вашим же соседям. Потом вы будете пить воду из этой речки, есть ягоды с того же куста и снова знакомиться со своими тараканами, когда их прогонит ваш сосед.

Всегда при уменьшении энтропии в данной системе лишний беспорядок «выкидывается» вовне, тем самым энт­ропия внешнего мира увеличивается. Производственная деятельность людей увеличивает беспорядок в биосфере: состояние окружающей среды ухудшается.

Так возникает определенное противоречие между развити­ем общества и генерируемым им беспорядком. Это происхо­дит при взаимодействии системы «человек - среда». Это проис­ходит на внутригосударственном уровне: чем больше упорядо­чено «наверху», тем больше беспорядка внизу. Это происходит и на международном уровне: для поддержания своей структуры общество (государство) скидывает на другие государства «нега­тив» — социальную напряженность, избытки вещества, отходы и избыточную энергию — в виде подавления соседей и созда­ния беспорядка у них. Какого порядка добились в СССР и Гер­мании к концу 30-х годов прошлого века! И чем он обернулся для мира? Громадным беспорядком — Мировой войной.

 





Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:



©2015- 2021 megalektsii.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.