Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Определение булевой функции




Определение 4.1. Булевой функцией f (x 1, x 2,..., xn) называется произвольная функция n переменных, аргументы которой x 1, x 2,..., xn и сама функция f принимают значения 0 или 1, т. е. xi {0, 1}, i = 1, 2,..., n; f (x 1, x 2,..., xn) {0, 1}.

Одной из важнейших интерпретаций теории булевых функций является теория переключательных функций. Первоначально математический аппарат теории булевых функций был применен для анализа и синтеза релейно-контактных схем с операциями последовательного и параллельного соединения контактов. Подробнее это приложение теории булевых функций будет рассмотрено в разделе 4.9.

Любая булева функция может быть представлена таблицей, в левой части которой перечислены все наборы переменных (их 2 n), а в правой части – значения функции. Пример такого задания представлен в таблице 4.1.

Таблица 4.1

x 1 x 2 x 3 f (x 1, x 2, x 3)
0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1  

 

Для формирования столбца значений переменных удобен лексико-графический порядок, в соответствии с которым каждый последующий набор значений получается из предыдущего прибавлением 1 в двоичной системе счисления, например, 100 = 011+ 1.

Всего существует 22 различных булевых функций n переменных.

Функций одной переменной – 4. Из них выделим функцию “отрицание x ”(обозначается Ø x). Эта функция представлена в таблице 4.2.

 

 

Таблица 4.2

x Ø x
   

Булевых функций двух переменных – 16 (22 при n = 2). Те из них, которые имеют специальные названия, представлены в таблице 4.3.

Таблица 4.3

x 1 x 2 x 1V x 2 x 1& x 2 x 1 x 2 x 1~ x 2 x 1 Å x 2 x 1¯ x 2 x 1ï x 2
0 0 0 1 1 0 1 1   0 1 1      

В таблице 4.3 представлены следующие функции двух переменных:

x 1V x 2 дизъюнкция;

x 1& x 2 конъюнкция;

x 1É x 2 импликация;

x 1~ x 2 эквивалентность;

x 1Å x 2 сложение по модулю 2;

x 1¯ x 2 стрелка Пирса;

x 1ï x 2 штрих Шеффера.

Остальные функции специальных названий не имеют и могут быть выражены через перечисленные выше функции.

 

Формулы логики булевых функций

Определение 4.2. Формула логики булевых функций определяется индуктивно следующим образом:

1. Любая переменная, а также константы 0 и 1 есть формула.

2. Если A и B – формулы, то Ø A, A V B, A & B, A É B, A ~ B есть формулы.

3. Ничто, кроме указанного в пунктах 1–2, не есть формула.

Пример 4.1.

Выражение (Ø x V y)&((y É z) ~ x) является формулой.

Выражение Ø x & y É z Ø ~ x не является формулой.

Часть формулы, которая сама является формулой, называется подформулой.

Пример 4.2.

x &(y É z) – формула; y É z – ее подформула.

Определение 4.3. Функция f есть суперпозиция функций f 1, f 2,..., fn если f получается с помощью подстановок этих формул друг в друга и переименованием переменных.

Пример 4.3.

f 1 = x 1& x 2 (конъюнкция); f 2 = Ø x (отрицание).

Возможны две суперпозиции:

1) f = f 1(f 2) = (Ø x 1)&(Ø x 2) – конъюнкция отрицаний;

2) f = f 2(f 1) = Ø(x 1& x 2) – отрицание конъюнкции.

Порядок подстановки задается формулой.

Всякая формула задает способ вычисления функции, если известны значения переменных.

Пример 4.4.

Построим таблицу значений функции f (x 1, x 2, x 3) = Ø(x 2 Ø x 3) ~ (Ø x 1V x 2).

Таблица 4.4 представляет последовательное вычисление этой функции.

Таблица 4.4

x 1 x 2 x 3 Ø x 3 x 2 Ø x 3 Ø(x 2 Ø x 3) Ø x 1 Ø x 1V x 2 f (x 1, x 2, x 3)
0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1            

 

Таким образом, формула каждому набору аргументов ставит в соответствие значение функции. Следовательно, формула так же, как и таблица, может служить способом задания функции. В дальнейшем формулу будем отождествлять с функцией, которую она реализует. Последовательность вычислений функции задается скобками. Принято соглашение об опускании скобок в соответствии со следующей приоритетностью операций: Ø, &, V, É и ~.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...