Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

§ 4. Дополнительные статистические показатели для оценки результатов факторного анализа




§ 4. Дополнительные статистические показатели для оценки результатов факторного анализа

 

В начале предыдущего параграфа мы отмечали, что вычислительные алгоритмы ФА основываются на ряде математических допущений о характере эмпирических данных, подвергаемых ФА. Остановимся на ряде статистических показателей, которые помогают исследователю оценить степень соответствия данных этим допущениям.

Как правило, в любой программе по ФА предусмотрен расчет показателей описательной статистики по матрице смешения. Например в статистических системах " Stadia" и SPSS для каждой переменной вычисляются общее количество наблюдений, среднее арифметическое значение и среднее квадратичное отклонение (см. табл. 3). Эти достаточно простые показатели позволяют быстро сравнить между собой все анализируемые переменные, и уже на уровне анализа исходных данных попытаться найти возможные ошибки, связанные либо с проведенными измерениями, либо с вводом данных в компьютер. Например, если при сборе данных использовалась 7-балльная шкала, то наверное вас насторожит среднее значение по какой-то переменной, равное 0. 87, или резко отличающаяся от других величина среднего квадратичного отклонения.

Таблица 3

Данные описательной статистики для 9 переменных

 

Коэффициент сферичности Бартлета используется для оценки " хорошести" корреляционной матрицы. Если этот коэффициент достаточно большой, а соответствующий ему уровень значимости мал (например, меньше 0. 05 или 0. 01), то это свидетельствует о надежности вычисления корреляционной матрицы. При высоком уровне значимости исследователю стоит задуматься об адекватности использования ФА с полученными данными.

Кроме того, для оценки надежности вычислений элементов корреляционной матрицы и возможности ее описания с помощью ФА во многих статистических программах применяется так называемая мера адекватности выборки Кайзера—Мейера—Олкина(КМО)*. По мнению Г. Кайзера (1974), значения КМО около 0. 9 оцениваются как " изумительные", 0. 8 — " достойные похвалы", 0. 7 — " средние", 0. 6 — " посредственные", 0. 5 — " плохие", а ниже 0. 5 — " неприемлемые". Для оценки надежности вклада в корреляционную матрицу каждой переменной в отдельности также используют меру выборочной адекватности (например, коэффициент MSA в системе SPSS). Вышеприведенные характеристики Г. Кайзера вполне справедливы и для оценки этих величин тоже. Исследование надежности каждой переменной позволяет исключить из расчетов одну или несколько переменных, и тем самым повысить результативность ФА.

* Имеется в виду адекватность факторной модели данному набору переменных, описываемому корреляционной матрицей.

 

Работая с различными данными, Г. Кайзер установил, что величина данного коэффициента адекватности повышается при: а) увеличении количества переменных, б) возрастании числа наблюдений каждой переменной, в) уменьшении числа общих факторов и г) увеличении абсолютных значений коэффициентов корреляций. По сути дела данный автор выделил те условия, при которых повышается адекватность данных, а следовательно, и информативность ФА.

§ 5. Несколько замечании по поводу конфирматорного ФА

 

Как было отмечено выше, конфирматорный ФА используется для проверки и подтверждения теоретической модели факторного типа эмпирическими данными. Предполагается, что у исследователя есть достаточно строго сформулированная модель изучаемой им реальности (например, какие психологические факторы в межкультурном исследовании мотивации достижения у школьников являются общими для всех культур, а какие специфическим образом влияют на мотивационные переменные только в одной стране).

При использовании конфирматорного ФА исследователь (в рамках своей модели) четко формулирует гипотезу о числе общих и специфических факторов. Естественно, эта гипотеза должна основываться на серьезном анализе природы исследуемых переменных и лежащих в их основе факторов. Более того, проверяя свою модель на реальных данных, исследователь может делать и количественные предположения о величине корреляции между переменными, величинах факторных нагрузок для ряда исследуемых переменных и зависимости между факторами (ортогональными или косоугольными). Имея данные эмпирических измерений, с одной стороны, и набор разнообразных теоретических гипотез — с другой, психолог с помощью ФА фактически занимается проверкой сформулированных им гипотез о свойствах изучаемой (моделируемой) реальности.

Подробное изложение исследовательских стратегий с помощью конфирматорного ФА не входит в задачу настоящего учебного пособия, поскольку представляет собой особую и достаточно специфическую задачу. Тем не менее, укажем, что в настоящее время существуют достаточно удобные компьютерные программы, где реализованы современные подходы к анализу моделей с латентными переменными, частным случаем которых и является ФА. В качестве примера мы можем привести достаточно известный статистический пакет Lisrel 8, который дает возможность обрабатывать данные методом моделирования с помощью линейных структурных уравнений. Для подробного знакомства с принципами конфирматорного ФА могут быть рекомендовано (Благуш, 1989), а также прекрасное описание статистического пакета Lisrel 8*.

* Для знакомства с использованием данного метода в психологии мы советуем прочесть статью Е. Л. Григоренко. Применение статистических методов моделирования с помощью линейных структурных уравнений в психологии: За и Против // Вопросы психологии, 1994. № 4.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...