Законы распределения функций случайной величины
⇐ ПредыдущаяСтр 5 из 5 Если
Если
где
где Пример. Пусть Решение.
Мы получили, что случайная величина Задача композиции. В одном из важных частных случаев функциональной зависимости
Если где суммирование распространяется на все значения индексов В частности, если
Если
Задача определения закона распределения суммы независимых случайных величин носит название задачи композиции. Описанные выше формулы (4.24) и (4.25) дают непосредственное решение задачи композиции. Формулу (4.25) удобно применять в тех случаях, когда плотности распределения вероятностей компонент описываются одной формулой на всей оси (что, например, справедливо для нормального закона, закона Коши и т.д.). Другой подход к решению задачи композиции основан на применении свойств характеристической функции (см. ниже). Так как
Закон распределения W определенного вида называется композиционно устойчивым, если из того, что две независимые случайные величины X и У подчиняются закону распределения данного вида, следует, что их сумма X + Y подчиняются закону распределения W того же вида. Пример. Доказать композиционную устойчивость нормального закона. 5. Характеристические функции случайных величин. Если Характеристической функцией gx(t) случайной величины X называется комплекснозначная неслучайная функция действительного аргумента t определяемая равенством Для НСВ характеристическая функция представляет собой преобразование Фурье от плотности распределения. Поэтому плотность выражается как обратное преобразование Фурье от характеристической функции Свойства характеристической функции
Характеристической функцией случайного вектора
Пример. Найти числовые характеристики По свойству 3 находим Дисперсию находим по формуле Окончательно находим
Литература 1. Статистическая динамика и оптимизация управления летательных аппаратов: Учебн. пособие для авиационных специальностей вузов/ А, А. Лебедев, В. Т. Бобронников, М. Н. Красильщиков, В. В. Малышев. – М. Машиностроение, 1985.
2. Вентцель Е. С. Теория вероятностей. – М.: Высшая школа, 1999. 3. Кибзун А. И., Горяинова Е. Р., Наумов А. В., Сиротин А. Н. Теория вероятностей и математическая статистика. – М.: ФИЗМАТЛИТ, 2002. 4. Сборник задач по математике для втузов. Часть 4: /Под общей ред. А. В. Ефимова и А. С. Поспелова. – М.: Изд-во ФИЗМАТЛИТ, 2003.
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|