Дерево решений задачи
Кроме использования платежной матрицы для решения данного типа задач, как уже указывалось, можно строить дерево решений. Например, для рассматриваемой в примере 9.1 задачи дерево имеет следующий вид (рис. 9.2).
Рис. 9.2. Дерево решений к примеру 9.1
При построении дерева узлы принятия решений означают выбор альтернатив, который делает менеджер, а узлы состояния внешней среды — возможные ответы среды. Если построение дерева идет слева направо, то расчет и принятие решений — справа налево: • в узлах состояния внешней среды платежи «сворачиваются» в значения ЕМУ с соответствующими им весами-вероятностями; • в узлах принятия решений происходит выбор лучших альтернатив, например, по критерию EMV=> max. При решении простых задач дерево не дает никаких преимуществ, но для решения многоуровневых задач его преимущества неоспоримы. Дерево, как любое графическое представление, более наглядно, поэтому предпочтительнее в более сложных ситуациях. Построение дерева рассмотрим также на примере решения задачи тактического планирования. Вьщеление только двух состояний внешней среды - благоприятного и неблагоприятного — далеко не единственный и не лучший способ оценки внешней среды, который применяется лишь в случаях, когда информация о среде ограничена. Альтернативных вариантов стратегий в общем случае может быть много. И это позволяет уточнить решение задачи.
Пример 9.2 Оптовый склад обслуживает кино- и фотолаборатории, в том числе отпускает им проявитель. Статистика уровня продаж: 11 упаковок продаются с вероятностью 45%, 12 упаковок — с вероятностью 35%, 13 упаковок - 20%. Прибыль от реализации одной упаковки — 35 руб. Непроданные упаковки в конце недели уничтожаются, при этом потери составляют 56 руб. с каждой упаковки. Какой недельный запас проявителя является Для склада оптимальным?
Отметим, что сумма вероятностей продажи 11, 12 и 13 упаковок равна 100%. Это означает, что никаких других объемов недельных продаж не зарегистрировано и в расчет они не могут быть включены. Рассчитаем платежи: а) проданы 11 упаковок: 35 х 11 = 385 руб., при запасе в И упаковок; б) проданы 11 упаковок при запасе в 12, а одна упаковка уничтожена1 385-56 = 329 руб.; - в) проданы 12 упаковок (весь запас): 35 х 12 = 420 руб., наличие спроса из 13 упаковок здесь ничего не меняет; г) при запасе в 13 упаковок возможны три варианта: продажа 11 упаковок (385 - 56 х 2 = 273 руб., две упаковки уничтожены), продажа 12 упаковок (420 — 56 = 364 руб., одна упаковка уничтожена), продажа 13 упаковок (35x13 = 455 руб.). Результаты расчета сведены в табл. 9.2. Расчет ЕМУ показывает, что лучший вариант решения - запасать 11 упаковок. Рассчитаем предельную цену полной информации о продажах (алгоритм ее расчета будет показан в следующем разделе): EVPI = 385 х 0,45 + 420 х 0,35 + 455 х 0,20 - 385 = 26,25 руб. Дерево решений этой задачи имеет следующий вид: Узлы состояния внешней среды Рис. 9.3. Дерево решений к примеру 9.2 Таблица 9.2
Читайте также: A) признание народа источником государственной власти, признание его права на участие в принятии политических решений, провозглашение широкого круга гражданских прав и свобод Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|