Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Тригонометрическая форма комплексного числа.




Пусть z = a+bi, полагаем r =(def) =|z|, r — модуль комплексного числа z.

a+bi= , положим

= cos и = sin .

Пусть z¹0, тогда угол j определен однозначно с точностью до 2pk. Если 0£j£2p, то он определен однозначно. Угол j называют аргументом комплексного числа z, r и j — полярные координаты точки.

Из тригонометрии мы знаем как искать j, если известно a и b.

Если r=0, то j может быть любой, то есть аргумент нуля не определён; r¹0, то аргумент определен с точностью до 2πk.

z = r(cosj+i sinj) (1)

Назовем выражение (1) тригонометрической формой комплексного числа.

Если два комплексных числа равны, то их модули равны, а их аргументы, вообще говоря, отличаются на 2pk.

Теорема 1.

Пусть z1 = r1 (cosj1+i sinj1), z2 = r2 (cosj2+i sinj2). Тогда:

1) z1z2 = r1r2(cos(j1+j2)+i sin(j1+j2))

(модуль произведения комплексных чисел равен произведению модулей, а аргумент – сумме аргументов);

2)

(модуль частного комплексных чисел равен частному модулей, а аргумент – разности аргументов).

Доказательство:

Докажем 1).

z1z2 =r1r2(cosj1cosj2–sinj1sinj2+i(sinj1cosj2+cosj1sinj2))=r1r2cos(j1+j2)+i sin(j1+j2)).

Аналогично с частным.

Следствие 1

Пусть z = r (cosj+i sinj), тогда z^(-1)= (cos(–j)+i sin(–j)).

Доказательство:

Z^(-1)= = = = (cos(–j)+i sin(–j)).

Следствие 2(формула Муавра).

Пусть z = r (cosj+i sinj). Тогда z^n= r^n(cos(nj)+i sin(nj)) для любого nÎZ.

Доказательство:

Если n — натуральное, то формула Муавра следует из правила умножения комплексных чисел в тригонометрической форме.

Если n — отрицательное, то можно представить z^n= (z -1)^(-n) и применить следствие (1) и доказанную формулу Муавра для nÎN.

Замечание.Тригонометрическая форма комплексного числа хорошо приспособлена для выполнения действий умножения, деления, возведения в степень.

 

ИЗВЛЕЧЕНИЕ КОРНЯ ИЗ КОМПЛЕКСНОГО ЧИСЛА.

Пусть z = a+bi.

Надо извлечь корень из z.

—?

обозначим через z1, то z1(^2)= z.

Пусть z1 = x+iy, тогда

(x2–y2)+2xyi = a+bi,

Решив эту систему, мы найдем подходящие значения z1.

Если так действовать и для извлечения корней более высокой степени, то придётся уметь решать уравнения соответствующих степеней.

Для извлечения корня из комплексного числа хорошо приспособлена тригонометрическая форма комплексного числа.

Пусть z = r(cosj+i sinj), надо найти = z1, положим

z1=ρ (cosy+i siny), z1(^n)==ρn(cos(ny)+i sin(ny), r = ρn Þ ρ = , j = ny+2pk Þy = .

Получим

= (cos + i sin ) (1),

где k — любое целое число, то есть корень n–той степени из произвольного комплексного числа z всегда существует и его можно посчитать по формуле (1), причем формула (1) даёт все корни, если k пробегает множество целых чисел (достаточно ограничиться k = 0,…, n–1)

Если возьмем k – любое, то мы можем разделить его с остатком на n:

k = nq+s; 0£s£n–1

.

Углы [2] и [3] отличаются на кратное 2p, и поэтому косинусы и синусы от них совпадают, следовательно формула (1) при угле [2] и при угле [3] даёт одинаковое значение.

Если брать k от 0 до n–1, то мы получим все значения. Нетрудно заметить, что все эти значения разные (смотри геометрическую интерпретацию).

Теорема 4.

Извлечение корня степени n из комплексного числа всегда возможно, и даёт n различных значений, получающихся по формуле (1).

Теорема нами доказана ранее.

Замечание(геометрическая интерпретация).

Все значения расположены на окружности радиуса с центром в начале координат и делят окружность на n равных частей:

 

 

КОРНИ ИЗ ЕДИНИЦЫ.

1=cos0+isin0 Þ =cos +isin , k=0,1,…,n-1.

Корни расположены на окружности единичного радиуса и делят эту окружность на n равных частей.

Теорема 1.

Все значения корня n–той степени из комплексного числа z можно получить умножением одного из них на все корни из 1.

Доказательство:

Возьмём a = = (cos +i sin ), где s–фиксированное число.

e1, e2,…, en – так обозначим все корни .

Домножим каждый из корней e1,…, en на a. Они разные, все являются корнями n–той степени из z, ибо (aei)n = z и их n штук.

Теорема доказана.

Теорема 2.

Произведение двух корней n–той степени из единицы есть корень степени n из единицы.

Следствие.

Степень корня n–той степени из единицы есть корень степени n из единицы.

Все ли корни из 1 равноправны?

n=4; 1, –1, i, –i — корни из единицы.

i; –i — первообразные корни; если i возводить в степени 0, 1, 2, 3, то получим все корни.

Определение 1.

Корень n–той степени из 1 называется первообразным, если он не даёт единицу в степени меньше, чем n.

Всегда ли есть первообразный корень?

Всегда! Например: cos +i sin .

Упражнение. Доказать, что корень n–той степени

ek = cos + i sin будет первообразным, если n и k — взаимно простые (не имеют общих делителей отличных от 1)

 

ЧИСЛОВОЕ ПОЛЕ.

В множествах Q Ì R Ì C возможны четыре операции +, -, *, /.

Определение 1. Подмножество K Ì C множества комплексных чисел C, состоящее более, чем из одного элемента, называют числовым полем, если выполняются следующие условия:

1) " a, bÎK Þ a+bÎK, то есть в множестве K всегда возможно сложение;

2) " aÎK Þ –aÎK;

3) " a, bÎK Þ abÎK, то есть задано умножение в K (K замкнуто относительно умножения);

4) " a ¹ 0; a(^-1)ÎK.

Из 2) с учётом 1) получаем, что в K всегда возможно вычитание.

Из 4) с учётом 3) получаем, что в K всегда возможно деление на число не равное 0.

Q — поле рациональных чисел;

R — поле вещественных чисел;

C — поле комплексных чисел.

Упражнение 1.Числовое поле всегда бесконечно.

Упражнение 2. Любое числовое поле всегда содержит Q (множество рациональных чисел).

Пример поля отличного от Q, R и C:

K = {a+b , где a и b ÎQ }.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...