Общая схема прогнозирования с использованием регрессионной зависимости
На практике чаще всего известны не только значения прогнозируемой величины для объектов аналогичных объекту прогнозирования или сама эта величина в прошлом, но и другие величины, влияющие на прогнозируемую или изменяющиеся совместно с ней. В этом случае говорят о наличии связи между этими величинами и использование знаний об этой связи, позволяет значительно повысить точность по сравнению с прогнозированием по выборке. Рассмотрим простейший случай парной зависимости, когда есть прогнозируемая величина и лишь одна величина на нее влияющая. Будем обозначать искомую прогнозируемую величину через У и называть зависимость переменной, а влияющие на нее переменную через Х и называть независимой переменной. Связь между зависимой и независимой переменными может быть функциональная, в этом случае каждому значению независимой переменной соответствует одно определенное значение зависимой переменной, графически такая связь выражается линией на графике. Второй вид связи – вероятностная (стохастическая) связь, в этом случае одному значению независимой переменной соответствует несколько значений зависимой переменной. Графически вероятностная связь может быть представлена как некое облако точек (рис.12). Причем частота появления различных значений переменной Y при одном и том же значении Рис.12. Функциональная (а) вероятностная (б) связь переменных.
Для описания вероятностной связи переменных используются уравнение регрессии. В идеологии регрессионного анализа лежит представление о всех возможных значениях переменных Х и У как о случайных отклонениях от их средних значений
Термин регрессия был введен в позапрошлом веке в результате изучения влияния роста родителей на рост детей. Повсеместно бытует мнение, что у высоких родителей высокие дети. Проверка на большом статистическом материале показала, что в среднем дети высоких родителей имеют рост меньший, чем рост родителей, т.е. рост детей высоких родителей регрессирует, имеет тенденцию возвращаться к среднему росту. А рост детей невысоких родителей прогрессирует – имеет тенденцию приближаться к среднему росту. Наиболее часто на практике для описания связи между X и Y применяется линейный закон. Соответственно говорят о парной линейной регрессионной зависимости, с ее помощью взаимосвязь между зависимой и независимой переменными описывается следующим образом: где:
Таким образом, случайная величина Y представляется состоящей из двух частей: теоретического значения, которое можно рассчитать по известному значению X с использованием формулы и остаточного члена
Среди причин появления случайной составляющей - отсутствие в уравнении регрессии других независимых переменных влияющих на зависимую переменную и не включенных в уравнение вследствие их незнания или отсутствия возможности надежного измерения; - агрегирование зависимой переменной из нескольких однородных, но все-таки отличающихся друг от друга переменных (прибыль по предприятию представляет собой сумму прибыли по отдельным продуктам производимым этим предприятием, а это схожие, но все-таки разные экономические категории); - несоответствие избранной теоретической зависимости между зависимой и независимой переменной фактической зависимости; - ошибки измерения как зависимой, так и независимой переменных. Во всех этих случаях возникают ошибки, которые приводят к возникновению случайной составляющей. Общая схема прогнозирования с использованием регрессионной зависимости выглядит следующим образом. По имеющемуся набору
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|