Определение сезонной составляющей временного ряда
В зависимости от характера сезонных колебаний различают два вида моделей – аддитивная и мультипликативная. По аддитивной модели временной ряд с сезонными колебаниями представляется в виде: где:
По мультипликативной модели временной ряд с сезонными колебаниями имеет в вид: Для решения вопроса о том какая из рассматриваемых моделей должна быть выбрана для конкретного временного ряда, необходимо построить график изменения прогнозируемой величины во времени и проанализировать изменение амплитуды сезонных колебаний (Рис.16.). В случае если амплитуда сезонных колебаний не имеет ярко выраженной тенденции к изменению во времени, то тогда может быть выбрана аддитивная модель (a), в противном случае предпочтительна мультипликативная (б).
Рис 16. Временные ряды, характерные для аддитивной (а) и мультипликативной(б)моделей.
Наиболее просто сезонная составляющая может быть определена с помощью скользящих средних с периодом осреднения равным периоду сезонных колебаний L. Скользящая средняя – это переменная значения которой равны среднему арифметическому значения исследуемой величины в точке для которой она вычисляется и значений всех точек, отстоящих от нее на 0.5*(L - 1) слева и справа в случае если L нечетное и 0.5L – если L четное. При вычислении значения скользящей средней для следующей точки временного ряда номера точек, участвующих в вычислении смещаются на единицу. Длинна периода сезонных колебаний – это число временных интервалов, через которые характер изменения временного ряда повторяется.
Таким образом для их вычисления скользящей средней вначале необходимо определить длину периода сезонных колебаний L. В простейшем случае найти ее можно на основании визуального анализа данных. Затем для каждой точки исходного временного ряда необходимо вычислить средние значения переменной Рис. 17. Получение центрированных скользящих средних с периодом осреднения равным двум. Где:
Как видно из схемы расчетов в результате усреднения число значений скользящей средней оказывается меньше числа точек исходного временного ряда на величину равную периоду осреднения L так как на краях временного ряда отсутствуют точки необходимые для нахождения скользящей средней. Потеря L точек приводит к тому, что минимальная длительность временного ряда должна быть равной хотя бы трем периодам колебаний.
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|