Оценка глобальной погрешности
Глобальной (накопленной) погрешностью[3] называется погрешность численного решения после выполнения нескольких шагов. Пусть мы имеем некоторый одношаговый метод, с помощью которого при заданных начальных данных и длине шага мы определяем численное решение , аппроксимирующее . Воспользуемся обозначениями Хенричи для этого процесса:
, (2.7.13)
и назовем функцией приращения для данного метода. Оценивание глобальной погрешности методами a) и b)
Тогда численное решение в точке получается с помощью пошаговой процедуры
, (2.7.14)
и наша задача состоит в оценке глобальной погрешности
(2.7.15)
Эта оценка находится простым способом: локальные погрешности переносятся в конечную точку и затем складываются. Этот «перенос погрешностей» можно выполнить двумя разными способами: a) перенося погрешность вдоль кривых точных решений; этот способ может дать хорошие результаты, если известны хорошие оценки распространения погрешности для точных решений. b) перенося погрешность -го шага посредством выполнения шагов численного метода; этот способ использовали в своих доказательствах Коши (1824) и Рунге (1905), он легко обобщается на многошаговые методы.
В обоих случаях оценим сначала локальные погрешности:
. (2.7.16)
Займемся теперь оценкой перенесенных погрешностей . a) Теорема. Обозначим окрестность точки , где – точное решение уравнения
.
Пусть в справедливы оценки локальных погрешностей (2.7.16) и выполнено одно из условий:
или . (2.7.17)
Тогда имеет место следующая оценка глобальной погрешности (2.7.15):
, (2.7.18)
где ,
и достаточно мало для того, чтобы численное решение оставалось в .
Доказательство. При оценка (2.7.18) переходит в .
. (2.7.19)
Подставляя в неравенство
выражение (2.7.18) с учетом (2.7.16) и принимая во внимание, что , приходим к такому неравенству:
.
Выражение в квадратных скобках мажорируется следующими интегралами:
, (2.7.20) . (2.7.21)
Отсюда вытекает справедливость оценки (2.7.18). b) При втором способе переноса погрешностей рассмотрим кроме (2.7.14) еще одно численное решение, значения которого в соседних узлах связаны равенством
.
Оценим норму разности через . Для формулы метода Рунге-Кутты запишем в следующих обозначениях:
Вычитая из этих формул соответствующие формулы (2.3.1), получим для норм разностей такие оценки:
Оценивание римановых сумм методом a) и b)
Пусть – постоянная Липшица для функции и пусть . Тогда функция приращения для метода (2.3.1) удовлетворяет неравенству
, (2.7.22) где
. (2.7.23)
Из (2.7.22) получаем искомую оценку:
, (2.7.24)
и с её помощью оценку перенесенных погрешностей вместо оценки (2.7.19). Предположим, что для начальных значений, лежащих на точном решении, локальная погрешность удовлетворяет оценке
(2.7.25)
и что в окрестности решения функция приращения удовлетворяет неравенству
. (2.7.26)
Тогда для глобальной погрешности (2.7.15) справедлива следующая оценка:
, (2.7.27)
где .
Оптимальный выбор шага
Предположим, что при интегрировании от точки до точки с шагом погрешность приближенно равна . Так как это соответствует росту погрешности со скоростью, приблизительно равной , то , где – функция, определяющая шаг. Положим и получим оценку интеграла, который приближенно равен полной погрешности:
С другой стороны, затраты будут пропорциональны числу шагов, которое приближенно равно
Методами вариационного исчисления можно показать, что если мы хотим минимизировать затраты при некотором фиксированном значении погрешности , то следует сохранять постоянной величину . Это означает, что окончательная погрешность должна быть одинаковой на каждом шаге. В современных программах[4], реализующих методы Рунге-Кутты, обязательно используется некоторый алгоритм автоматического изменения шага интегрирования. Интуитивно ясно, что на участках плавного изменения решения счет можно вести с достаточно крупным шагом. В то же время, на тех участках, где происходят резкие изменения поведения решения, необходимо выбирать мелкий шаг интегрирования. Обычно начальное значение шага задет пользователь или оно определено в программе. Далее шаг интегрирования изменяется в соответствии с величиной, получаемой в ходе вычисления оценки локальной погрешности. Существует достаточно много способов оценки локальной погрешности, среди которых так называемое правило Рунге. Однако в моей программе я использовал самый простой и в то же время эффективный способ оценки локальной погрешности, который описан в разделе 3.1. «Описание программы Ilya RK-4 версия 1.43». Этот метод базируется на удвоении или делении пополам длины шага в зависимости от отношения локальной погрешности и максимально локальной допустимой погрешности . Практическая часть
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|