Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Методика решения иррациональных уравнений

 

В работе будем придерживаться следующего определения иррационального уравнения:

Иррациональным уравнением называется уравнение, содержащее неизвестное под знаком корня.

Прежде чем приступить к решению сложных уравнений учащиеся должны научиться решать простейшие иррациональные уравнения. К простейшим иррациональным уравнениям относятся уравнения вида:

 

 

Основная идея решения иррационального уравнения состоит в сведении его к рациональному алгебраическому уравнению, которое либо равносильно исходному иррациональному уравнению, либо является его следствием.

Главный способ избавиться от корня и получить рациональное уравнение - возведение обеих частей уравнения в одну и ту же степень, которую имеет корень, содержащий неизвестное, и последующее "освобождение" от радикалов по формуле . [6]

Если обе части иррационального уравнения возвести в одну и ту же нечетную степень и освободиться от радикалов, то получится уравнение, равносильное исходному. [6]

При возведении уравнения в четную степень получается уравнение, являющееся следствием исходного. Поэтому возможно появление посторонних решений уравнения, но не возможна потеря корней. Причина приобретения корней состоит в том, что при возведении в четную степень чисел, равных по абсолютной величине, но разных по знаку, получается один и тот же результат.

Так как могут появиться посторонние корни, то необходимо делать проверку, подставляя найденные значения неизвестной только в первоначальное уравнение, а не в какие-то промежуточные.

Рассмотрим применение данного метода решения иррациональных уравнений. [7]

Пример 1. Решите уравнение .

Решение. Возведем обе части этого уравнения в квадрат  и получим , откуда следует, что  или .

Проверка. : . Это неверное числовое равенство, значит, число  не является корнем данного уравнения.

: . Это верное числовое равенство, значит, число  является корнем данного уравнения.

Ответ. .

Проверка, осуществляемая подстановкой найденного решения в исходное уравнение, может быть легко реализована, если проверяемые корни - "хорошие" числа, а для "громоздких" корней проверка может быть сопряжена со значительными вычислительными трудностями. Поэтому каждый образованный школьник должен уметь решать иррациональные уравнения с помощью равносильных преобразований, так как, выполняя равносильные преобразования, можно не опасаться ни потери корней, ни приобретения посторонних решений. [17] Аккуратное возведение в четную степень уравнения вида  состоит в переходе к равносильной ему системе

 


Неравенство  в этой системе выражает условие, при котором уравнение можно возводить в четную степень, отсекает посторонние решения и позволяет обходиться без проверки. [17]

Школьники довольно часто добавляют к этой системе неравенство . Однако этого делать не нужно и даже опасно, поскольку условие  автоматически выполняется для корней уравнения , в правой части которого стоит неотрицательное выражение. [9]

Пример 2. Решить уравнение .

Решение. Это уравнение равносильно системе

 

 

Решая первое уравнение этой системы, равносильное уравнению , получим корни  и .

Второй корень не удовлетворяет неравенству системы и, следовательно, является посторонним корнем исходного уравнения.

Ответ. .

При решении иррациональных уравнений полезно перед возведением обеих частей уравнения в некоторую степень "уединить радикал", то есть представить уравнение в виде .

Тогда после возведения обеих частей уравнения в n- ую степень радикал справа исчезнет. [4]

Пример 3. Решить уравнение

Решение. Метод уединения радикала приводит к уравнению . Это уравнение равносильно системе


 

Решая первое уравнение этой системы, получим корни  и , но условие  выполняется только для .

Ответ. .

Полезно запомнить схему решения еще одного вида иррациональных уравнений . Такое уравнение равносильно каждой из двух систем

 

 

Поскольку после возведения в четную степень получаем уравнение-следствие . Мы должны, решив его, выяснить, принадлежат ли найденные корни области определения исходного уравнения, то есть выполняется ли неравенство  (или ). На практике из этих систем выбирают для решения ту, в которой неравенство проще. [9]

Пример 4. Решить уравнение

 

.

 

Решение. Это уравнение равносильно системе

 


Решая первое уравнение этой системы, равносильное уравнению , получим корни  и .

Однако при этих значениях x не выполняется неравенство , и потому данное уравнение не имеет корней.

Ответ. Корней нет.

Теперь можно перейти к решению иррациональных уравнений, не относящихся к простейшим.

Пример 5. Решить уравнение .

Решение. Возведем обе части уравнения в квадрат и произведем приведение подобных членов, перенос слагаемых из одной части равенства в другую и умножение обеих частей на .

В результате получим уравнение

 

, (1)

 

являющееся следствием исходного.

Снова возведем обе части уравнения в квадрат. Получим уравнение

 

,

 

которое приводится к виду

 

.

 

Это уравнение (также являющееся следствием исходного) имеет корни , . Оба корня, как показывает проверка, удовлетворяют исходному уравнению.

Ответ. , .

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...