Методика решения иррациональных неравенств
Если в любом иррациональном уравнении заменить знак равенства на один из знаков неравенства: >, Способ решения таких неравенств состоит в преобразовании их к рациональным неравенствам путем возведения обеих частей неравенства в степень. Решение иррациональных неравенств осложняется тем обстоятельством, что здесь, как правило, исключена возможность проверки, поэтому надо стараться делать все преобразования равносильными. При решении иррациональных неравенств следует запомнить правило: при возведении обеих частей неравенства в нечетную степень всегда получается неравенство, равносильное данному неравенству. [16] Но если при решении уравнений в результате возведения четную степень мы могли получить посторонние корни (которые, как правило легко проверить) и не могли потерять корни, то корни неравенства при бездумном возведении в четную степень могут одновременно и теряться, и приобретаться. [8] Например, возведя в квадрат: верное неравенство верное неравенство неверное неравенство неверное неравенство Вы видите, что возможны все комбинации верных и неверных неравенств. [8] Однако верно основное используемое здесь утверждение: если обе части неравенства возводят в четную степень, то получится неравенство, равносильное исходному только в том случае, если обе части исходного неравенства неотрицательны. [16]
Поэтому основным методом решения иррациональных неравенств является сведение исходного неравенства к равносильной системе или совокупности систем рациональных неравенств. [17] Наиболее простые иррациональные неравенства имеют вид: [16], [17]
Иррациональное неравенство
Первое неравенство в системе {1} является результатом возведения исходного неравенства в степень, второе неравенство представляет собой условие существования корня в исходном неравенстве, а третье неравенство системы выражает условие, при котором это неравенство можно возводить в квадрат. Иррациональное неравенство
Обратимся к первой системе схемы {2}. Первое неравенство этой системы является результатом возведения исходного неравенства в квадрат, второе - условие, при котором это можно делать. Вторая система схемы {2} соответствует случаю, когда правая часть отрицательна, и возводить в квадрат нельзя. Но в этом и нет необходимости: левая часть исходного неравенства - арифметический корень - неотрицательна при всех x, при которых она определена. Поэтому исходное неравенство выполняется при всех x, при которых существует левая часть. Первое неравенство второй системы и есть условие существования левой части. Иррациональное неравенство
Поскольку обе части исходного неравенства неотрицательны при всех x, при которых они определены, поэтому его можно возвести в квадрат. Первое неравенство в системе {3} является результатом возведения исходного неравенства в степень. Второе неравенство представляет собой условие существования корня в исходном неравенстве, понятно, что неравенство
Схемы {1}-{3} - наш основной инструмент при решении иррациональных неравенств, к ним сводится решение практически любой задачи. Разберем несколько примеров. [8] Пример 1. Решить неравенство Решение. Заметим, что правая часто этого неравенства отрицательна, в то время как левая часть неотрицательна при всех значениях x, при которых она определена. Поэтому неравенство решений не имеет. Ответ. Решений нет. Пример 2. Решить неравенство Решение. Как и в предыдущем примере, заметим, что правая часть данного неравенства отрицательна, следовательно, возводить это неравенство в квадрат нельзя. И не надо, поскольку левая часть исходного неравенства неотрицательна при всех значениях x, при которых она определена. Это означает, что левая часть больше правой части при всех значениях x, удовлетворяющих условию Ответ. Пример 3. Решить неравенство Решение. В соответствии со схемой {1} решения неравенств этого типа, запишем равносильную ему систему рациональных неравенств
Условие
Ответ.
Пример 4. Решить неравенство Решение. Это неравенство решается при помощи схемы {2}. В данном случае Пример 5. Решить неравенство Решение. Это неравенство может быть решено при помощи схемы {1}. Система, равносильная исходному неравенству, имеет вид
Ответ.
Пример 6. Решить неравенство Решение. Данное неравенство можно решать с помощью схемы {2}. Оно равносильно совокупности двух систем
Ответ.
Пример 7. Решить неравенство Решение. Согласно схеме {3}, данное неравенство равносильно системе
Ответ.
Более сложно решение иррациональных неравенств вида
Поскольку (соответственно неравенству Пример 8. Решить неравенство Решение. Данное неравенство равносильно следующей системе неравенств:
Последнее неравенство этой системы приводится к виду
Ответ. Для решения иррациональных неравенств, так же как и для решения иррациональных уравнений, с успехом может применяться способ подстановки или введения новой переменной. Весьма эффективны так называемые рационализирующие подстановки. Применение рационализирующих подстановок позволяет привести функцию, иррациональную относительно исходной переменной, к рациональной функции относительно новой переменной. [17] Пример 9. Решить неравенство Решение. Введем новую переменную t с помощью рационализирующей подстановки Тогда
Ответ. Заключение
В данной курсовой работе сделана попытка разработать методику обучения решению иррациональных уравнений и неравенств в школе. В ходе работы были решены следующие задачи: Проанализированы действующие учебники алгебры и начала математического анализа для выявления представленной в них методики решения иррациональных уравнений и неравенств. Проведенный анализ позволяет сделать следующие выводы: теория методов изложена не достаточно строго; в одном учебнике [1] материала по методам решения иррациональных уравнений нет. В остальных учебниках рассмотрены два основных способа решения: возведение обеих частей уравнения в степень, с последующей подстановкой полученных корней в исходное уравнение, а также решение уравнений с помощью равносильных преобразований; очень мало материала по методам решения иррациональных неравенств; среди предлагаемых заданий много однотипных; Изучены стандарты образования по данной теме; Изучена учебно-методическая литература по данной теме; Рассмотрены ситуации, связанные с потерей или приобретением посторонних корней в процессе решения, показано, как их распознавать и как с ними можно бороться; Подобраны примеры решения иррациональных уравнений и неравенств для демонстрации излагаемого теоретического материала;
Показано, что общие методы решения уравнений применимы для решения иррациональных уравнений и неравенств. Список библиографии
1. Алимов Ш.А. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - М.: Просвещение, 1993. - 254 с. 2. Башмаков М.И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - М.: Просвещение, 1992. - 351 с. 3. Болтянский В.Г. Математика: лекции, задачи, решения. - Литва: Альфа, 1996. - 637 с. 4. Виленкин Н.Я. и др. Алгебра и математический анализ для 11 класса: Учеб. пособие для учащихся шк. и кл. с углубл. изуч. математики. - М.: Просвещение, 1998. - 288 с. 5. Галицкий М.Л. Сборник задач по алгебре для 8-9 классов: Учеб. пособие для учащихся шк. и кл. с углубл. изуч. математики. - М.: Просвещение, 1999. - 271с. 6. Григорьев А.М. Иррациональные уравнения. // Квант, №1, 1972, с.46-49. 7. Денищева Л.О. Готовимся к единому государственному экзамену. Математика. - М.: Дрофа, 2004. - 120 с. 8. Егоров А. Иррациональные неравенства. // Математика. Первое сентября, №15, 2002. - с.13-14. 9. Егоров А. Иррациональные уравнения. // Математика. Первое сентября, №5, 2002. - с.9-13. 10. Мордкович А.Г. Алгебра и начала анализа.10-11 кл.: В двух частях. Ч.1: Учеб. для общеобразоват. учреждений. - М.: Мнемозина, 2004. - 315 с. 11. Мордкович А.Г. Алгебра и начала анализа.10-11 кл.: В двух частях. Ч.2: Задачник для общеобразоват. учреждений. - М.: Мнемозина, 2004. - 315 с. 12. Мордкович А.Г. Кто-то теряет, кто-то находит. // Квант, №5, 1970, с.48-51. 13. Колмогоров А.Н. Алгебра и начала анализа. Учеб. для 10-11 кл. сред. шк. - М.: Просвещение, 1991. - 320 с. 14. Кузнецова Г.М. Программа для общеобразоват. школ, гимназий, лицеев: Математика.5-11 кл. - М.: Дрофа, 2004, 320 с. 15. Потапов М. Как решать уравнения без ОДЗ. // Математика. Первое сентября, №21, 2003. - с.42-43. 16. Соболь Б.В. Пособие для подготовки к единому государственному экзамену и централизованному тестированию по математике. - Ростов на Дону: Феникс, 2003. - 352 с. 17. Черкасов О.Ю. Математика: Справочник для старшеклассников и поступающих в вузы. - М.: АСТ-ПРЕСС, 2001. - 576 с. 18. Шабунин М. Лекции для абитуриентов. Лекция 1. // Математика. Первое сентября, №24, 1996. - с.24. 19. Шувалова Э.З. Повторим математику. Учеб пособ. для поступающих в вузы. - М.: Высшая школа, 1974. - 519 с.
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|