Тождественные преобразования при решении иррациональных уравнений
При решении иррациональных уравнений и неравенств часто приходится применять тождественные преобразования, связанные с использованием известных формул. К сожалению, эти действия иногда столь же небезопасны, как уже рассмотренное возведение в четную степень, - могут приобретаться или теряться решения. [17] Обсудим несколько ситуаций, в которых эти проблемы наступают, и посмотрим, как их распознать и как можно с ними бороться. I. Пример 6. Решить уравнение . Решение. При первом же взгляде на это уравнение возникает мысль избавиться от корня с помощью "преобразования" . Но это неверно, так как при отрицательных значениях x оказывалось бы, что . Необходимо запомнить формулу . Уравнение теперь легко решается
. Ответ. . Теперь посмотрим "обратное" преобразование. Пример 7. Решить уравнение . Решение. Сейчас настало время задуматься о безопасности формулы . Нетрудно видеть, что ее левая и правая части имеют разные области определения и что это равенство верно лишь при условии . Поэтому исходное уравнение равносильно системе
Ответ. . II. Следующее преобразование, которое должно явиться предметом заботы для каждого, кто решает иррациональные уравнения, определяется формулой
.
Если пользоваться этой формулой слева направо, расширяется ОДЗ и можно приобрести посторонние решения. Действительно, в левой части обе функции и должны быть неотрицательны; а в правой неотрицательным должно быть их произведение. [17] Замечание. При возведении уравнения в квадрат учащиеся нередко в уравнении типа (1) из Примера 5 производят перемножение подкоренных выражений, т.е. вместо такого уравнения пишут уравнение
.
Такое "склеивание" не приводит к ошибкам, поскольку такое уравнение является следствием уравнения (1). Следует, однако, иметь в виду, что в общем случае такое перемножение подкоренных выражений дает неравносильные уравнения. Поэтому в рассмотренном выше примере можно было сначала перенести один из радикалов в правую часть уравнения, т.е. уединить один радикал. Тогда в левой части уравнения останется один радикал, и после возведения обеих частей уравнения в квадрат в левой части уравнения получится рациональное выражение. [3] Пример 8. Решить уравнение .
Решение. Уединив первый радикал, получаем уравнение
,
равносильное исходному. Возводя обе части этого уравнения в квадрат, получаем уравнение
,
равносильное уравнению
. (2)
Уравнение (2) является следствием исходного уравнения. Возводя обе части этого уравнения в квадрат, приходим к уравнению
, или .
Это уравнение является следствием уравнения (2) (а значит, и исходного уравнения) и имеет корни , . Первый корень удовлетворяет исходному уравнения, а второй - не удовлетворяет. Ответ. . Рассмотрим пример, где реализуется проблема с "расклеиванием" корней, то есть использование формулы . [13] Пример 9. Решить уравнение . Решение. Попробуем решить это уравнение разложением на множители
.
Заметим, что при этом действии оказалось потерянным решение . Посмотрите, оно подходит к исходному уравнению и уже не подходит к полученному: не имеет смысла при . Поэтому это уравнение лучше решать обычным возведением в квадрат
Ответ. , .
Вывод. Есть два пути. Или аккуратно возводить уравнение в квадрат, или безошибочно определять, какие решения могли быть потеряны, и проверить, не случилось ли этого на самом деле. III. Существует еще более опасное действие - сокращение на общий множитель. [17]
Пример 10. Решить уравнение . " Решение". Сократим обе части уравнения на , получим . Нет ничего более опасного и неправильного, чем это действие. Во-первых, подходящее решение исходного уравнения было потеряно; во-вторых, было приобретено два посторонних решения . Получается, что новое уравнение не имеет ничего общего с исходным! Вот правильное решение. Решение. Перенесем все члены в левую часть уравнения и разложим ее на множители
.
Это уравнение равносильно системе
которая имеет единственное решение . Ответ. .
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|