Основные подходы к оценке коэффициентов эконометрической модели, содержащей лаговые зависимые переменные
Эконометрические модели, содержащие в правой части лаговые зависимые переменные, неоднородны по своим свойствам. В основном это обусловлено появлением специфических свойств у ошибки модели, выражаемых через особенности ее автокорреляционной функции и корреляционных взаимосвязей с независимыми (лаговыми) переменными. Вариант 1. Ошибка модели et по своим свойствам является стационарным процессом второго порядка с нулевым математическим ожиданием, постоянной дисперсией и нулевыми автокорреляциями всех порядков. Это означает, что ее ковариационная матрица удовлетворяет соотношению Cov (e)= se 2 E. Вариант 2. Ошибка модели является аддитивной функцией текущего и предшествующего значений “белого шума”. Представим такую функцию в следующем виде: иt = et – bet– 1, где b – априорно неизвестный коэффициент, 0< b £1, et – значение случайного процесса типа “белого шума” с нулевым средним, конечной дисперсией и нулевыми коэффициентами автокорреляции, начиная с первого. Вариант 3. Значение ошибки модели в момент t оказывается связанным со значением в момент t –1. Иными словами, ряд ошибки модели et удовлетворяет следующему соотношению: et = ret– 1+ xt, где½ r ½<1 и xt ~ N (0, se 2).
Оценка точности прогноза Точность прогноза тем выше, чем меньше величина ошибки, которая представляет собой разность между прогнозируемым и фактическим значением исследуемой величины. Вся проблема состоит в том, чтобы вычислить ошибку прогноза, так как фактическое значение прогнозируемой величины станет известно только в будущем. Следовательно, методы оценки точности по уже свершившимся событиям (апостериорные) не имеют практической ценности, так как являются лишь констатацией факта. При разработке прогноза оценку его точности требуется производить заранее (априорно), когда истинное значение прогнозируемой величины еще не известно. Точность прогноза оценивается величиной доверительного интервала для заданной вероятности его осуществления, а под достоверностью понимают оценку вероятности осуществления прогноза в заданном доверительном интервале. Таким образом, точность прогноза выражается с помощью вероятностных пределов фактической величины от прогнозируемого значения.
Следует отметить, что точное совпадение фактических данных и прогностических точечных оценок, полученных путем экстраполяции кривых, характеризующих тенденцию, явление маловероятное. И этому виной следующие источники погрешностей: 1) выбор формы кривой (порядка полинома и т. д.), характеризующей тренд, содержит элемент субъективизма. Во всяком случае, часто нет твердой основы для того чтобы утверждать, что выбранная форма кривой является единственно возможной или тем более наилучшей для экстраполяции в данных конкретных условиях; 2) оценивание параметров кривых (иначе говоря, оценивание тренда) производится на основе ограниченной совокупности наблюдений, каждое из которых содержит случайную компоненту. В силу этого параметрам кривой, а следовательно, и ее положению в пространстве свойственна некоторая неопределенность; 3) тренд характеризует некоторый средний уровень ряда на каждый момент времени. Отдельные наблюдения, как правило, отклонялись от него в прошлом. Естественно ожидать, что подобного рода отклонения будут происходить и в будущем. Погрешность, связанная со вторым и третьим ее источниками, и может быть отражена в виде доверительного интервала прогноза при принятии некоторых допущений о свойстве ряда. Однако полученные в ходе статистического оценивания параметры не свободны от погрешности, связанной с тем, что объем информации, на основе которой производилось оценивание, ограничен, и в некотором смысле эту информацию можно рассматривать как выборку. Строго говоря, так как величина является средней квадратической ошибкой «генеральной совокупности» величин yn, достигаемой лишь при , то необходимо вводить поправку на недостаточный объем выборки. С этой целью в формулу вычисления границ доверительного интервала необходимо ввести коэффициент — значение t - статистики Стьюдента и оперировать выборочной СКО:
Величину выбирают из таблиц в зависимости от ( = 1— Р, где Р — заданная вероятность осуществления прогноза) и ( = п — т, где п — число уровней динамического ряда, т — число параметров уравнения тренда, для линейного тренда m = 2).
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|