Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Диверсификация финансовых активов. Рыночный и собственный риск портфеля

 

Исходя из рыночной модели, общий риск финансового актива (σi2) состоит из двух частей:

- рыночный или систематический риск;

- собственный или несистемный риск.

 

,

 

где σi2 – общий риск финансового актива;

βiI2 σI2 – рыночный риск;

σεi2 – собственный риск.

Мерой собственного риска является дисперсия случайной погрешности.

Общий риск портфеля

Рассмотрим случай, когда доходность каждого рискового финансового актива из портфеля связана с доходностью рыночного индекса.

Доходность портфеля может быть определена как:

 

,

 

где хi – доля средств, вложенных в актив i;

N – количество финансовых активов.

 

- рыночная модель портфеля финансовых активов.


 

Данная модель является прямым обобщением рыночных моделей отдельных финансовых активов, входящих в его состав.

Общий риск портфеля измеряется дисперсией его доходности и обозначается σр2:

 

 

Он состоит из рыночного и собственного риска.

Увеличение диверсификации может привести к снижению общего риска портфеля. Это происходит вследствие сокращения собственного риска портфеля. В то время как рыночный риск портфеля остается примерно таким же.

Чем более диверсифицирован портфель, тем меньше каждая доля актива в нем. При этом значение βpI не меняется существенным образом, за исключением случаев преднамеренного включения в портфель финансовых активов с относительно низким или высоким значением βiI.

Поэтому диверсификация приводит только к усреднению среднего риска.

Иная ситуация при рассмотрении риска портфеля

Предположим, что во все финансовые активы инвестировано одинаковое количество средств, т.е. доля xi каждого финансового актива равна 1/N.


(средний собственный риск).

Собственный риск портфеля в N-раз меньше среднего собственного риска финансового актива.

Более диверсифицированный портфель – средний собственный риск практически не изменится.

Пример:

Первый портфель ценных бумаг состоит из 4-х ценных бумаг, второй – из 10. Все ценные бумаги имеют β = 1 и собственный риск = 30%. В обоих портфелях доля всех ценных бумаг одинакова. Вычислить общий риск каждого портфеля, если стандартное отклонение индекса рынка составляет 20%.

 

Оценка рисков безрисковых активов

 

Безрисковый активпредполагает, что доход по нему является определенным в конце инвестиционного периода.

Стандартное отклонение для безрискового актива рано нулю.

Ковариация между ставкой доходности по безрисковому активу и ставкой доходности по рисковому активу также равна нулю.

Т.е. безрисковые актив имеет фиксированный доход и нулевую вероятность неуплаты (государственные ценные бумаги).

При этом срок погашения совпадает с периодом владения, т.е. отсутствует неопределенность.

Такое инвестирование называется безрисковым кредитованием.

Появление новых возможностей при инвестировании существенно расширяет достижимое множество портфеля активов и изменяет расположение эффективного множества.

Рассмотрим ожидаемую доходность и стандартное отклонение для портфеля, состоящего из инвестиций в безрисковые активы в сочетании с одним рисковым активом.

Пример:

A, B, C + 1 безрисковый актив

х1 – доля актива

х4 = 1 – х1 – доля в безрисковом активе

 

Портфели х1 х4 rp σ p
A 0,00 1,00 4% 0,0
B 0,25 0,75 7,05% 3,02
C 0,5 0,5 10,10% 6,04
D 0,75 0,25 13,15% 9,06

 

Предположим, что х4 имеет ставку доходности 4%.

r4 = 4%

r1 = 16,2%

 

 


Любой портфель, состоящий из комбинации безрисковых и рисковых активов, будут иметь ожидаемую доходность и стандартное отклонение, которые лежат на одной прямой, соединяющей точки, соответствующие этим активам.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...