Теорема о принципе максимина.
Для
Доказательство. Для
Для игры, заданной матрицей выигрышей Скажем ещё несколько слов о матричных играх. Для матричных игр доказано, что любая из них имеет решение, и оно может быть легко найдено путем сведения игры к задаче линейного программирования. Матричная игра игроков с нулевой суммой может рассматриваться как следующая абстрактная игра двух игроков. Первый игрок имеет m страте6гий i = 1,2,...m, второй имеет n стратегий j=1,2,...n. Каждой паре стратегий (i, j) поставлено в соответствии число a Каждый из игроков делает один ход: игрок 1 выбирает свою i-ю стратегию (i= Каждая стратегия игрока i= Если рассмотреть матрицу
то проведение каждой партии матричной игры с матрицей А сводится к выбору игроком 1 i- строки, а игроком 2 j-го столбца и получения игроком 1 (за счет игрока 2) выигрыша a Главным в исследовании игр является понятие оптимальных стратегий игроков. В это понятие вкладывается следующий смысл: обеспечивается наибольший гарантированный выигрыш при всевозможных стратегиях другого игрока. Исходя из этих позиций, игрок 1 исследует матрицу выигрышей А следующим образом: для каждого значения i (i=
min a j
т.е определяется минимальный выигрыш для игрока 1 при условии, что он примет свою i-ю чистую стратегию, затем из этих минимальных выигрышей отыскивается такая стратегия i=i
max min a
Определение: Число Игрок 2 при оптимальном своем поведении должен стремиться по возможности за счет своих стратегий максимально уменьшить выигрыш игрока 1. Поэтому для игрока 2 отыскивается max a i
т.е. определяется max выигрыш игрока 1, при условии, что игрок 2 применит свою j-ю чистую стратегию, затем игрок 2 отыскивает свою j=j
min max a j i
Определение. Число Другими словами, применяя свои чистые стратегии, игрок 1 может обеспечить себе выигрыш не меньше Переходя к рациональному представлению матрицы игры, отметим, что стратегии двух игроков сводятся в таблицу, а непосредственно само представление упрощает поиск решения матричных игр.
ПРИМЕР 3: Провести SP-разбиение матрицы игры (Н)
Решение: вычисляем верхнюю и нижнюю цену игры Исходная игра имеет SP
Формирование SP- разбиения матричной игры с SP по существу и является рациональным представлением исходной матрицы (Н) игры. Значит, понятие рациональности представления матрицы игры преследует цель сформулировать методы рационального преобразования платёжной матрицы с целью вычисления цены игры v или упрощения построения подыгры-решения. Далее рассмотрим такое понятие, как решение, при помощи фиктивного разыгрывания. Есть 2 игрока, которые без теории игр, хотят сделать игру несколько раз, причём каждый из них склонен к статистике и оценивает стратегию своего противника. При каждом разыгрывании противоборствующие стороны стремятся максимизировать свой ожидаемый выигрыш против наблюдаемого вероятностного распределения противника: если игрок 2 использует j-ю стратегию Опишем некоторые свойства решений матричных игр. Пусть G(X,Y,A) – игра двух лиц с нулевой суммой, в которой игрок 1 выбирает стратегию Свойство 1: Если чистая стратегия одного из игроков содержится в спектре (спектр – множество чистых стратегий, вероятность которых положительна) некоторой его оптимальной стратегии, то выигрыш этого игрока в ситуации, образованной данной стратегией и любой оптимальной стратегией другого игрока, равен значению конечной антагонистической игры. Свойство 2: Ни одна доминируемая чистая стратегия игрока не содержится в спектре его оптимальной стратегии. Свойство 3: Если Свойство 4: Тройка Рекомендуемые страницы: Воспользуйтесь поиском по сайту: ©2015- 2021 megalektsii.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
|