Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Теорема о принципе максимина.

Для с  (где  - множества чистых стратегий игроков, (х, у) – ситуация игры  - функции полезности игроков, заданные на множестве ситуаций игры аналитически ) общего вида

 

.

 

Доказательство.

Для

 

 


 

Для игры, заданной матрицей выигрышей можно записать следующее равенство .

Скажем ещё несколько слов о матричных играх. Для матричных игр доказано, что любая из них имеет решение, и оно может быть легко найдено путем сведения игры к задаче линейного программирования.

Матричная игра игроков с нулевой суммой может рассматриваться как следующая абстрактная игра двух игроков.

Первый игрок имеет m страте6гий i = 1,2,...m, второй имеет n стратегий j=1,2,...n. Каждой паре стратегий (i, j) поставлено в соответствии число a , выражающее выигрыш игрока 1 за счет игрока 2, если первый игрок примет свою i-ю стратегию, а 2-ю j-ю стратегию.

Каждый из игроков делает один ход: игрок 1 выбирает свою i-ю стратегию (i= ), 2- свою j-ю стратегию (j= ) после чего игрок 1 получает выигрыш a  за счет игрока 2 (если a <0, то это значит, что игрок 1 платит второму сумму a ). На этом игра заканчивается.

Каждая стратегия игрока i= ; j=  часто называется чистой стратегией.

Если рассмотреть матрицу

 


то проведение каждой партии матричной игры с матрицей А сводится к выбору игроком 1 i- строки, а игроком 2 j-го столбца и получения игроком 1 (за счет игрока 2) выигрыша a .

Главным в исследовании игр является понятие оптимальных стратегий игроков. В это понятие вкладывается следующий смысл: обеспечивается наибольший гарантированный выигрыш при всевозможных стратегиях другого игрока. Исходя из этих позиций, игрок 1 исследует матрицу выигрышей А следующим образом: для каждого значения i (i= ) определяется минимальное значение выигрыша в зависимости от применяемых стратегий игрока 2

 

min a  (i= )

j

 

т.е определяется минимальный выигрыш для игрока 1 при условии, что он примет свою i-ю чистую стратегию, затем из этих минимальных выигрышей отыскивается такая стратегия i=i , при которой этот минимальный выигрыш будет максимальным, т.е. находится

 

max min a  = a  =  (1)

 

Определение: Число , определенное по формуле (1) называется чистой нижнейценойигры показывает, какой минимальный выигрыш может гарантировать себе игрок 1, применяя свои чистые стратегии при всевозможных действиях игрока 2.

Игрок 2 при оптимальном своем поведении должен стремиться по возможности за счет своих стратегий максимально уменьшить выигрыш игрока 1. Поэтому для игрока 2 отыскивается


max a

i

 

т.е. определяется max выигрыш игрока 1, при условии, что игрок 2 применит свою j-ю чистую стратегию, затем игрок 2 отыскивает свою j=j  стратегию, при которой игрок 1 получит min выигрыш, т.е. находит

 

min max a =a =  (2)

j i

 

Определение. Число , определяемое по формуле (2), называется чистой верхней ценой игры и показывает, какой максимальный выигрыш за счет своих стратегий может себе гарантировать игрок 1.

Другими словами, применяя свои чистые стратегии, игрок 1 может обеспечить себе выигрыш не меньше , а игрок 2 за счет применения своих чистых стратегий может не допустить выигрыш игрока 1 больше, чем .

Переходя к рациональному представлению матрицы игры, отметим, что стратегии двух игроков сводятся в таблицу, а непосредственно само представление упрощает поиск решения матричных игр.

 

ПРИМЕР 3: Провести SP-разбиение матрицы игры (Н)

 

X1 2 3 4 5
X2 1 4 0 5
X3 1 0 6 7
X4 1 2 3 4
  Y1 Y2 Y3 Y4

 

2 3 4 5 2
1 4 0 5 0
1 0 6 7 0
1 2 3 4 1
2 4 6 7

 

Решение: вычисляем верхнюю и нижнюю цену игры

Исходная игра имеет SP  (x1,y1) в чистых стратегиях. Существование SP в чистых стратегиях матричной игры с полной информацией позволяет провести SP-разбиение (Н) исходной игры:

 

.

 

Формирование SP- разбиения матричной игры с SP по существу и является рациональным представлением исходной матрицы (Н) игры. Значит, понятие рациональности представления матрицы игры преследует цель сформулировать методы рационального преобразования платёжной матрицы с целью вычисления цены игры v или упрощения построения подыгры-решения.

Далее рассмотрим такое понятие, как решение, при помощи фиктивного разыгрывания. Есть 2 игрока, которые без теории игр, хотят сделать игру несколько раз, причём каждый из них склонен к статистике и оценивает стратегию своего противника. При каждом разыгрывании противоборствующие стороны стремятся максимизировать свой ожидаемый выигрыш против наблюдаемого вероятностного распределения противника: если игрок 2 использует j-ю стратегию  раз, то игрок 1 выберет i-ю стратегию, чтобы максимизировать . Аналогично, если игрок 1 использует i-ю стратегию  раз, то игрок 2 выберет j-ю стратегию, чтобы минимизировать . Условно эмпирические распределения сходятся к оптимальным стратегиям. Точнее, пусть  - число использований первым игроком i-ой стратегии в течение первых N розыгрышей. Пусть , то тогда  является смешанной стратегией. Здесь справедливо утверждение о том, что предел любой сходящейся подпоследовательности является оптимальной стратегией, т.е. если  и полученные стратегии игроков 1 и 2, то выполняется равенство . Такой метод полезен в случае игры с большим числом стратегий.

Опишем некоторые свойства решений матричных игр. Пусть G(X,Y,A) – игра двух лиц с нулевой суммой, в которой игрок 1 выбирает стратегию , а игрок 2 - , после чего игрок 1 получает выигрыш A=A(x,y) за счёт игрока 2.

Свойство 1: Если чистая стратегия одного из игроков содержится в спектре (спектр – множество чистых стратегий, вероятность которых положительна) некоторой его оптимальной стратегии, то выигрыш этого игрока в ситуации, образованной данной стратегией и любой оптимальной стратегией другого игрока, равен значению конечной антагонистической игры.

Свойство 2: Ни одна доминируемая чистая стратегия игрока не содержится в спектре его оптимальной стратегии.

Свойство 3: Если  – конечная антагонистическая игра, а , подыгра игры G причём  - чистая стратегия игрока 1 в игре G, доминируемая над некоторой стратегией , спектр которой не содержит . Тогда всякое решение  игры  является решением игры G.

Свойство 4: Тройка является решением игры  <=>, когда является решением игры , где а – любое вещественное число, к>0


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...