Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Пример решения матричной игры со смешанным расширением

Рассмотрим пример решения матричной игры со смешанным расширением. Платёжную матрицу игры составим на основе исходных данных, заменив лишь значения долей продукции предприятия 1, приобретаемой населением в зависимости от соотношений цен (табл. 2.1).

 

Таблица 2.1 - Доля продукции предприятия 1, приобретаемой населением в зависимости от соотношения цен на продукцию

Цена реализации 1 ед. продукции, д.е.

Доля продукции предприятия 1, купленной населением

Предп. 1 Предп. 2
10 10 0,31
10 6 0,33
10 2 0,18
6 10 0,7
6 6 0,3
6 2 0,2
2 10 0,9
2 6 0,85
2 2 0,69

 

Применив к исходным данным задачи формулу (1) определения разницы прибыли от производства продукции, получим следующую платёжную матрицу

Платёжная матрица в игре «Борьба двух предприятий за рынок продукции региона»

 

  B1 B2 B3 minj
A1 0,17 0,62 0,24 0.17
A2 3 -1,5 -0,8 -1.5
A3 0,75 0,5 0,175 0,175
maxi 3 0.62 0.24  

 

В данной матрице нет доминируемых или дублирующих стратегий. Нижняя цена игры равна 0,175, а верхняя цена игры равна 0,24. Нижняя цена игры не равна верхней. Поэтому решения в чистых стратегиях не существует и для каждого из игроков необходимо найти оптимальную смешанную стратегию.

Решение задачи

1. В данной матрице имеются отрицательные коэффициенты. Для соблюдения условия неотрицательности в задачах линейного программирования прибавим к каждому коэффициенту матрицы модуль минимального отрицательного коэффициента. В данной задаче к каждому коэффициенту матрицы необходимо прибавить число 1,5 – значение модуля наименьшего отрицательного элемента матрицы. Получим платёжную матрицу, преобразованную для выполнения условия неотрицательности

Платёжная матрица, преобразованная для выполнения условия неотрицательности

 

  B1 B2 B3
A1 1,67 2,12 1,74
A2 4,5 0 0,7
A3 2,25 2 1,675

 

2. Опишем задачу линейного программирования для каждого игрока в виде системы линейных неравенств:

Для игрока 1:

1,67×x1 + 4,5×x2 + 2,25×x3 ³ 1

2,12×x1 + 0×x2 + 2×x3 ³ 1

1,74×x1 + 0,7×x2 + 1,675×x3 ³ 1

x1³ 0; x2³ 0; x3³ 0

min Z = x1 + x2 + x3

Для игрока 2:

1,67×y1 + 2,12×y2 + 1,74×y3 £ 1

4,5×y1 + 0×y2 + 0,7×y3 £ 1

2,25×y1 + 2×y2 + 1,675×y3 £ 1

y1³ 0; y2³ 0; y3³ 0

max Z = y1 + y2 + y3

3. Решим обе задачи с использованием симплекс-метода, применяя программный комплекс "Линейная оптимизация".

В результате решения задачи получим следующие значения целевой функции и переменных:

Z = 0,5771

V* = 1/0,5771 = 1,7328

x1 = 0,5144; x2 = 0; x3 = 0,0626

y1 = 0,0582; y3 = 0,5189

4. Для определения значений вероятностей выбора стратегий игроков 1 и 2 умножим значения переменных на V*. P1 = x1×V* = 0,8914, p2 =0, p3 = x3×V* = 0,1083: q1 = y1×V* = 0,1008, q2 = 0, q3 = y3×V* = 0,8991.

5. Определим значение цены игры. Для этого из величины V* вычтем 1,5 (значение модуля наименьшего отрицательного элемента).

V = 1,7328 - 1,5 = 0,2328

Таким образом, в данной игре выиграет предприятие 1 (значение V > 0). Для достижения своей оптимальной стратегии (получения максимального математического ожидания гарантированного выигрыша) предприятие 1 должно выбирать технологию 1 с вероятностью 0,8914, а технологию 3 – с вероятностью 0,1083. Предприятие 2, соответственно, должно выбирать технологию 1 с вероятностью 0,1008, а технологию 3 – с вероятностью 0,8991. Значение математического ожидания выигрыша предприятия 1 составит 0,2328 тыс. д.е.

Исследование операций

 

Скажем несколько слов об основных методологических принципах Исследования операций:

· Системный подход. Его суть состоит в систематическом поиске существенных взаимодействий при оценке деятельности или стратегии любой части организации

· Комплексный научный коллектив. Необходимость привлечения к решению практических задач разных специалистов связана с требованием всестороннего подхода к проблеме

· Научный метод. Так как эксперимент в узком смысле этого слова невозможен, нужно заменить реальную действительность её научной моделью. Поэтому решение задач исследования операций при научном подходе сводится на практике к решению уравнений или систем уравнений при условии выполнения различных заданных критериев.

Назовём теперь основные этапы исследования операций:

· Содержательная постановка задачи

· Построение математической модели

· Решение задачи на модели

· Проверка адекватности модели

· Построение конкурирующего алгоритма

· Реализация решения

Несмотря на различное содержание задач, их физическую суть, математические постановки этих задач имеют много общего. В каждой из них требуется максимизировать или минимизировать некоторую линейную функцию нескольких переменных, ограничения, положенные на совокупность этих переменных являются либо линейными уравнениями, либо линейными неравенствами. Поэтому далее рассмотрим только математическую постановку задачи линейного программирования. К настоящему времени в литературе выделяют следующую классификацию ЗЛП ( общая задача линейного программирования; каноническая целевая функция задачи линейного программирования; основная задача линейного программирования; основная задача линейного программирования с ограничениями – неравенствами ) и их решений ( допустимое решение; допустимое базисное решение; оптимальное решение ).

Общая задача линейного программирования заключается в отыскании вектора 1, х2,..., хn) максимизирующего (минимизирующего) критерий оптимальности (функцию цели задачи)

 

 

при ограничениях линейного типа в виде равенств:

 

 

в виде неравенств:

 

 


 

и ограничениях на переменные состояния:

Эта задача при наличии двух (или трех) переменных имеет наглядное геометрическое представление.

Пусть целевая функция имеет вид . Если на плоскости переменных  и принимает некоторое постоянное значение  то определяемое последним соотношением множество точек плоскости (, ) является линией равного значения уровня (линией уровня) целевой функции. Причем, при =  = 0 эта линия «сжимается» в точку (рис. 1), при имеем  и линия равного уровня является прямой линией, проходящей через точки  и

 

Рис. 1 - Геометрическое представление целевой функции


Операцией – называется всякое мероприятие (или система действий), объединенное единым замыслом, и направленное к достижению какой-то определённой цели. Операция всегда есть управляемое мероприятие, т.е. наблюдается зависимость, каким способом выбрать параметры, характеризующие её организацию. Всякий определённый выбор параметров называется решением. Оптимальными называются решения по тем или другим признакам предпочтительные перед другими.

В исследовании операций используется научный метод для изучения и объяснения явлений, связанных с функциональными системами, так как в рамках данной дисциплины изучается определенный круг явлений реальной действительности. Такие системы нередко включают людей и механизмы, которые действуют в условиях реального мира, причем слову «механизм» мы придаем достаточно общее значение, охватывающее все случаи – от механических устройств, обычно определяемых их названиями, до сложных социальных структур, функционирующих в соответствии с установленными правилами.

Научная дисциплина, называемая исследованием операций, наблюдает реальные явления, связанные с функциональными системами, разрабатывает теории (которые многие исследователи называют моделями), предназначенные для объяснения данных явлений, использует эти теории для описания того, что произойдет при изменении условий, и проверяет предсказания новыми наблюдениями.

Таким образом, исследование операций – наука, так как эта дисциплина использует научный метод для получения соответствующих знаний и отличается от других наук предметом исследований. Она изучает явления, связанные с функциональными системами, в том аспекте, который почти не рассматривается другими науками.

Учитывая этапы реализации научного метода, для любой научной дисциплины можно ожидать систематических публикаций четырех категорий, в которых соответственно приводятся результаты, получаемые при наблюдении явлений, и специальные способы проведения таких наблюдений. Даются построения математических моделей; описывается применение этих моделей для составления прогноза на основе полученных результатов; проводится проверка прогнозов путем сравнения с результатами новых наблюдений.

Во всяком случае, на протяжении всей истории развития методов исследования операций научные работники следовали рекомендациям Блеккета согласно которым, исследование операций, как и любая другая наука, не базируется на использовании точных копий аналитических методов какой-либо другой науки, а требует разработки своего собственного математического аппарата – методов исследований операций, ориентированного на специфику, присущую этой области и задачам исследования. Этот аппарат не должен оставаться неизменным; наоборот, он должен меняться в соответствии с характером исследуемых задач.

Довольно часто отправным моментом построения моделей служило сходство с моделями, используемыми другими науками. Таким образом, новые теоретические направления были развиты в основном в послевоенное время. Основы теории ведения боевых действий заложены Ланчестером в 1916г., и, хотя во время войны математические аспекты этой теории исследовались достаточно интенсивно, непосредственного применения при разработке операций военного времени она не нашла; действительно, вплоть до 1954г. Эта теория не была достаточно проверена.

Зарождение исследования операций как научной дисциплины было обусловлено неотложным требованием решения важных практических проблем. Поэтому в процессе становления исследования операции научные работники, которые занимались соответствующими исследованиями, не только заложили фундамент некоторого нового научного направления, но и использовали полученные знания для практического решения проблем. В течение второго и третьего десятилетий существования группы по исследованию операций значительно выросли и стали достаточно отличаться друг от друга по направлениям. Однако тесная связь между исследовательскими и практическими аспектами разработок оставалась характерной особенностью данной дисциплины: термин «исследование операций» как раз и подчеркивает их неразрывность. Итак, исследование операций включает как научное исследование систем, так и соответствующие виды технической деятельности, направленной на практическую реализацию результатов таких исследований.

Однако эти прикладные аспекты исследования операций предполагают не только простое применение знаний, полученных в результате использования теории, но требуют и наличие творческого начала (ориентации работы в желаемых направлениях), а также профессионального умения и навыков практического проектирования (направленных на выполнение требуемых задач или решение важных проблем). Кроме того, важно обеспечить внедрение результатов работ.

В исследовании операций немаловажную роль играют задачи, которые непосредственно вносят вклад в рациональное использование имеющихся в наличии ресурсов. Для примера рассмотрим подробное решение одной из задач.

Пример задачи о производстве красок Задача фирмы Reddy Mikks Небольшая фабрика фирмы Reddy Mikks изготовляет два вида красок: для внутренних (I) и наружных (E) работ. Продукция обоих видов поступает в оптовую продажу. Для производства красок используются два исходных продукта-А и В. Максимально возможные суточные запасы этих продуктов составляют 6 и 8 т соответственно. Расходы А и В на 1 т соответствующих красок и максимально возможный запас приведены в таблице.

 


Изучение рынка сбыта показало, что суточный спрос на краску I никогда не превышает спроса на краску Е более чем на 1 т. Кроме этого установлено, что спрос на краску I никогда не превышает 2 т в сутки. Оптовые цены одной тонны красок равны: 3 тыс. долл. для краски Е 2 тыс. долл. для краски I.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...