Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Теорема умножения вероятностей




Предположим, что проводится испытание, заключающееся в бросании правильно выполненного игрального кубика два раза подряд. Возможные результаты такого испытания представим в виде таблицы:

1,1 1,2 1,3 1,4 1,5 1,6
2,1 2,2 2,3 2,4 2,5 2,6
3,1 3,2 3,3 3,4 3,5 3,6
4,1 4,2 4,3 4,4 4,5 4,6
5,1 5,2 5,3 5,4 5,5 5,6
6,1 6,2 6,3 6,4 6,5 6,6

В каждой ячейке таблицы первая цифра – результат первого бросания, вторая цифра – результат второго бросания.

Как видно из таблицы, возможны 36 вариантов исхода двукратного бросания кубика. Попробуем рассчитать вероятность выпадения два раза подряд числа 6. Для правильно выполненного кубика все приведенные в таблице исходы равновероятны и, следовательно, выпадение двух шестерок, как и выпадение любой другой пары одинаковых чисел, имеет вероятность, равную . Но , то есть вероятность выпадения подряд двух шестерок равна произведению вероятности выпадения числа 6 на самое себя. Данный пример иллюстрирует теорему умножения вероятностей: вероятность совместного появления независимых событий равна произведению их вероятностей.

Для случая двух независимых событий А и В:

Р(А и В)=Р(А)·Р(В).

Так как события А и В независимы, то каждому из m1 случаев, благоприятствующих событию А, соответствуют m2 случаев, благоприятствующих событию В. Таким образом, общее число случаев, благоприятствующих появлению событий А и В, равно, m1· m2 а общее число равновозможных событий равно n1·n2, где n1 и n2 – числа равновозможных событий соответственно для А и В. Отсюда вероятность совместного появления событий равна: .

Теорема умножения вероятностей усложняется, если определяется вероятность события, состоящего из совместного появления двух зависимых событий.

Вероятность наступления в некотором испытании одновременно двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое события имело место:

Р(А и В)=Р(А)·Р(B/A)=Р(В)·Р(A/B) – формула Байеса

При решении задач необходимо:

1. Выяснить, являются ли эти события независимыми или зависимыми;

2. Определить вероятности каждого отдельного события;

3. Определить вероятность одновременного наступления этих событий.

Задача:

В урне находится 10 белых и 20 черных шаров. Определить вероятность вынимания двух белых шаров подряд.

Дано: Решение:

m1 =10 Вероятность вынимания первого белого шара равна

m2=20

n= m1+ m1 =30 Вероятность вынимания второго белого шара равна:

P(A и В)-?

Тогда вероятность вынимания двух белых шаров подряд будет:

Р(А и В)=Р(А)·Р(B/A)=0,33·0,31≈0,1

Задача:

Считая, что рождение девочки или мальчика – это независимые и равновозможные события, определить вероятность появления в семье подряд трех девочек.

Дано: Решение:

P(D)=0,5 Согласно теореме умножения вероятностей для

P(D1 и D2 и D3)-? независимых событий:

Р(D1 и D2 и D3)=[Р(D)]3=0,53=0,125 (12,5%)

Эталоны решения типовых задач

Задача №1. Проводившиеся в некотором районе многолетние наблюдения показали, что из 50000 двадцатилетних граждан до 50 лет доживает в среднем 18120 человек, до 80 лет-724. Найти вероятности для двадцатилетних и пятидесятилетних дожить до 80 лет.

Решение.

Дано: Решение:

n=50000 Вероятность дожить до 80 лет 20-летному гражданину Р(А1)

m1=18120 равна:

m2=724

P(A1)-? Вероятность дожить пятидесятилетному до 80 лет Р(А2) равна:

P(A2)-?

Ответ: P(A1)=1,4% P(A2)= 4%

Задача №2. Вероятность вызова врача в течение часа P(A)=0,47. Найти вероятность, что в течение часа вызова врача не последует.

Дано: Решение:

P(A)=0,47 Сумма вероятностей двух противоположных событий равна 1:

-?

Отсюда:

Ответ:

Задача №3. Аптечный склад получает лекарства из городов А,В,С и Д. Вероятность поступления лекарств из города А - Р(А)=0,11; из города В – Р(В)=0,28 и из города Д – Р(Д)=0,32. Найти вероятность поступления лекарств из города С.

Дано: Решение:

P(A)=0,11 Сумма вероятностей событий, составляющих полную

P(В)=0, 28 систему, равна единице (условие нормировки)

P(Д)=0,32 P(А)+P(В)+Р(С)+P(Д)=1

P(С)-? Р(С)=1-(Р(А)+Р(В)+Р(Д))=1-(0,11+0,28+0,32)=1-0,71=0,29

Ответ: Р(С)=0,29=29%

Задача №4. На обследование прибыла группа из 50 человек. Семеро из них больны. В кабинет врача приглашали по 2 человека. Найти вероятность того, что:

а) оба больны,

б) оба здоровы,

в) один болен, один здоров.

Дано: Решение:

n=50 а) Пусть Р(А) вероятность того, что первый

m=7 вошедший болен, а Р(В) – второй вошедший болен. Р(А и В)-? Р(А и В, или С и Д)-? События А и В зависимые.

Р(А и В)=Р(А)

б) А - первый здоров, В -второй здоров.

Р(А и В)=Р(А)

в) Первая ситуация:

А- первый болен, В - второй здоров

Р(А)=

Р(А и В)=Р(А)

Вторая ситуация:

С- первый здоров, Д - второй болен

Р(С и Д)=Р(С)

Общая вероятность равна:

Р(А и В, или С и Д)= Р(А и В)+ Р(С и Д)=0,12+0,12=0,24

Ответ: а. Р(А и В)=0,017

б. Р(А и В)=0,74

в. Р(А и В, или С и Д)=0,24

Задача №5. Из 20 ампул с лекарственными препаратами ёмкостью по 2 мл в 5 ампулах количество препарата отличалось от нормы. Какова вероятность, что из трёх наугад взятых ампул хотя бы одна окажется нестандартной?

Дано: Решение:

n=20 Задача решается от противного. Противоположными будут

m=5 события, что во всех трёх ампулах лекраственного препарата

содержится в норме (2мл).

Вероятность, что в первой ампуле содержится норма препарата:

;

во второй:

;

в третьей:

.

Вероятность, что во всех трёх ампулах содержится норма лекраственного препарата:

Р(А)=Р(А1 и А2 и А3)=Р(А1)·Р(А2)·Р(А3)=

Сумма вероятностей противоположных событий равна единице

=1

Ответ:

ПРАКТИЧЕСКАЯ ЧАСТЬ

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...