Эллипсы рассеивания. Приведение нормального закона к каноническому виду
Рассмотрим поверхность распределения, изображающую функцию (9.1.1). Она имеет вид холма, вершина которого находится над точкой В сечении поверхности распределения плоскостями, параллельными оси
или, обозначая константу
Уравнение эллипса (9.2.1) можно проанализировать обычными методами аналитической геометрии. Применяя их, убеждаемся, что центр эллипса (9.2.1) находится в точке с координатами
Рис. 9.2.1 Это уравнение дает два значения углов: Таким образом, ориентация эллипса (9.2.1) относительно координатных осей находится в прямой зависимости откоэффициента корреляции Пересекая поверхность распределения плоскостями, параллельными плоскости Известно, что уравнение эллипса принимает наиболее простой, так называемый «канонический» вид, если координатные оси совпадают с осями симметрии эллипса. Для того чтобы привести уравнение эллипса рассеивания к каноническому виду, достаточно перенести начало координат в точку
Каноническая форма нормального закона на плоскости имеет вид
где
Обычно, рассматривая нормальный закон на плоскости, стараются заранее выбрать координатные оси
В некоторых случаях координатные оси выбирают параллельно главным осям рассеивания, но начало координат с центром рассеивания не совмещают. При этом случайные величины
где Перейдем в канонической форме нормального закона (9.2.5) от средних квадратических отклонений квероятным отклонениям:
Величины
В такой форме нормальный закон часто применяется в теории стрельбы.
Напишем уравнение эллипса рассеивания в каноническом виде:
где Из уравнения видно, что полуоси эллипса рассеивания пропорциональны главным средним квадратическим отклонениям (а значит, и главным вероятным отклонениям). Назовем «единичным» эллипсом рассеивания тот из эллипсов равной плотности вероятности, полуоси которого равны главным средним квадратическим отклонениям Кроме единичного эллипса рассеивания иногда рассматривают еще «полный» эллипс рассеивания, под которым понимают тот из эллипсов равной плотности вероятности, в который с практической достоверностью укладывается все рассеивание. Размеры этого эллипса, разумеется, зависят от того, что понимать под «практической достоверностью». В частности, если принять за «практическую достоверность» вероятность порядка Рассмотрим специально один частный случай, когда главные средние квадратические отклонения равны друг другу:
Тогда все эллипсы рассеивания обращаются в круги, и рассеивание называется круговым. При круговом рассеивании каждая из осей, проходящих через центр рассеивания, может быть принята за главную ось рассеивания, или, другими словами, направление главных осей рассеивания неопределенно. При некруговом рассеивании случайные величины
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|