Гидрогенизационные процессы
К гидрогенизационным процессам обычно относятся: - гидроочистка, которая ставит своей основной целью удаление сернистых соединений и непредельных углеводородов, а при более жестком режиме - гидрирование ароматических углеводородов до нафтенов (применительно к керосиновым и дизельным фракциям); - гидрообессеривание тяжелых нефтяных остатков, котельного топлива; - собственно гидрокрекинг - каталитический процесс более глубокого превращения сырья различного фракционного состава (но преимущественно тяжелых сернистых дистиллятов и остатков) с целью получения светлых нефтепродуктов - бензина, реактивного и дизельного топлив. Непосредственное присоединение водорода к углеводородным молекулам исходного сырья может происходить только при наличии в них двойных и тройных связей. При этом наиболее легко насыщаются ацетиленовые углеводороды, затем идут диены, а за ними олефины алифатического и циклического строения. Ароматические углеводороды требуют для своего гидрирования более высоких парциальных давлений водорода. Примером наименее глубокого гидрогенизационного облагораживания является гидрирование фракций пиролизной смолы. Эти фракции содержат большое количество диенов, легко переходящих в полимеры, которые затрудняют последующую переработку. Для избирательного гидрирования диенов, не затрагивающего олефинов и ароматических углеводородов, применяют специальные гидрирующие катализаторы, например палладиевые. Гидрирование диенов проводят в очень мягких условиях: при 20-75°С и 4-5 МПа. Никаких побочных реакций расщепления при этом не наблюдается. Приобретая химическую стабильность после первой ступени гидрирования, эта фракция поступает на вторую ступень, где гидрируются олефины.
Вторым видом гидроочистки, протекающим более глубоко и менее избирательно, является очистка дистиллятов от сернистых соединений. В этом случае применяют стойкие к сере катализаторы: алюмо-кобальт- или алюмо-никель-молибденовые. Известно, что энергия связи С—S (227 кДж/моль) значительно меньше, чем связи С—С (332 кДж/моль). В процессе гидроочистки нефтепродукта, содержащего тиофеновую серу, происходит разрыв тиофенового кольца с превращением серы в сероводород, а углеводородной части в бутан путем насыщения свободных и двойных связей. Помимо целевой реакции при этом протекают и побочные - частичное расщепление углеводородов и гидрирование образовавшихся непредельных углеводородов до парафинов. Однако доля этих реакций при гидроочистке невелика. Так, при гидроочистке дизельной фракции (240-3 5 0°С) самотлор-ской нефти получается 96 мае. % гидроочищенного дизельного топлива, 2% отгона (бензиновые фракции) и 0,75 мае. % углеводородного газа, остальное - сероводород. При этом, если гидроочистке подвергают дистиллят вторичного происхождения, наблюдается насыщение непредельных углеводородов. Большей частью гидроочистку осуществляют при 350-400°С и 3-5 МПа. Имеются и значительно более глубокие формы гидроочистки, например гидрооблагораживание дизельных фракций, обычно получаемых каталитическим крекингом, с целью повышения их цетанового числа посредством частичного гидрирования ароматической части до нафтенов и одновременным насыщением непредельных соединений и удалением серы. Такой процесс, сопровождающийся значительным изменением химического состава сырья, проводят при высоком давлении - до 15 МПа. Гидроочистке подвергают разные дистилляты - от бензинов до тяжелых газойлей как прямой гонки, так и вторичного происхождения (легкая фракция пиролизной смолы, бензины, легкие газойли коксования и каталитического крекинга).
Значительно более сложен процесс гидрообессеривания остаточного нефтяного сырья. Известно, что в прямогонных остатках концентрируются помимо сернистых соединений, переходящих в остаток в количестве 60-80% от суммарного содержания серы в нефти, и другие каталитические яды и де-зактиваторы - смсшистоасфальтеновые, азотсодержащие компоненты, а главное металлоорганические соединения ванадия, никеля и др. При этих условиях очень трудно сохранять постоянную активность катализатора в течение длительного времени и обеспечивать эффективный контакт сырья, водорода и катализатора. Если на основе сернистых остатков получают котельное топливо с умеренным содержанием серы (например, 1 мае. %), происходит частичное разложение сырья с образованием «1 мае. % газа, 7-8 мае. % бензинокеросиновой фракции и «90 мае. % котельного топлива. Наиболее глубокой формой гидрогенизационных процессов является гидрокрекинг. Форма каталитического крекинга, протекающего в присутствии водорода, носит название гидрокрекинга (ранее процесс называли деструктивной гидрогенизацией). При обычном термическом и каталитическом крекинге происходит перераспределение водорода, содержащегося в сырье, между продуктами крекинга. Чем тяжелее сырье и чем больше в нем смолисто-асфальтеновые веществ, тем больше образуется при крекинге тяжелых, обедненных водородом компонентов - кокса и крекинг-остатка. Особенно отчетливо это проявляется при коксовании тяжелого высокоароматизированного сырья. Например, при коксовании остатка >450°С термогазойля (исходного сырья для производства сажи) было получено 63,8 мае. % кокса, 34,2 мае. % газа и всего 2 мае. % жидких фракций. В данном случае произошло практически полное распределение водорода и углерода между газом и коксом, т.е. было достигнуто предельно возможное для данного сырья концентрирование углерода. Если в зону крекинга вводить водород в присутствии гидрирующих катализаторов, даже при глубоком превращении тяжелого сырья можно получить высокий выход легких дистиллятов при полном отсутствии или при минимальных коксоотложениях.
Гидроочистка дистиллятов Выше отмечалось, что гидроочистка является наименее глубокой формой гидрогенизационных процессов. Гидроочистке подвергают как прямс гонные дистилляты (бензин, реактивное и дизельное топливо, вакуумные газойли), так и дистилляты вторичного происхождения. Эти дистилляты проходят гидроочистку для удаления сернистых, азотистых и кислородсодержащих соединений, а также для насыщения непредельных углеводородов, если это дистиллят вторичного происхождения. Все сернистые соединения (или большая их часть) переходят при гидроочистке в сероводород с образованием при этом насыщенного углеводорода. Азот- и кислородсодержащие соединения переходят при гидроочистке соответственно в аммиак и воду с одновременным образованием углеводородов данной структуры. Традиционные катализаторы гидроочистки - алюмо-кобальт-молибденовые (АКМ) и алюмо-никель-молибденовые (АНМ). Гидрирующими компонентами являются кобальт, никель и молибден, находящиеся в свежем катализаторе в виде оксидов, нанесенных на оксид алюминия. В алюмо-никель-молибденовый катализатор на силикатной основе (АНМС) добавляют для прочности 5-7 мае. % диоксида кремния. В процессе гидроочистки оксиды металлов переходят в сульфиды. Катализатор АКМ имеет высокую активность и селективность по целевой реакции обессеривания, почти не сопровождающейся гидрокрекингом. Он достаточно активен в процессе насыщения непредельных углеводородов водородом. Катализатор АНМ менее активен при насыщении непредельных, но способен вызывать насыщение ароматических углеводородов и более активен при гидрировании азотистых соединений. Основные параметры процесса. Гидроочистке подвергают дистилляты различного фракционного и химического состава, поэтому параметры режима и расход водорода весьма различны. Более легкие дистилляты, например бензины, легче подвергаются гидроочистке в соответствии с характером содержащихся в них сернистых соединений (меркаптаны, сульфиды) и более низкомолекулярных непредельных. С утяжелением сырья в нем появляются более стабильные сернистые соединения (например, тиофены) и труднее гидрируемые непредельные, если это сырье вторичного происхождения. В то же время при утяжелении сырья требования к содержанию серы в гидроочи-щенном продукте снижаются. Так, допустимое содержание серы в бензине, поступающем после гидроочистки на установку риформинга, составляет тысячные доли процента; содержание серы в реактивном топливе не должно превышать 0,05 мае. %, в дизельном - 0,2 мае. %. Последняя цифра также должна быть доведена скоро до величины 0,05 мае. %. Это обстоятельство несколько нивелирует режимы очистки сырья различного фракционного состава.
Расход водорода на гидроочистку также, естественно, связан с происхождением сырья и содержанием в нем серы. Содержание серы в прямогон-ных бензинах даже из высокосернистых нефтей относительно невелико. Например, в бензиновой фракции 85-180°С товарной нефти с 3 мае. % серы остается всего 0,12 масс. % серы. В то же время бензин, полученный замедленным коксованием полугудрона с 2,5 мае. % серы, после гидроочистки имеет 0,6 мае. % серы. Управляемыми параметрами гидроочистки являются температура, объемная скорость подачи сырья, давление и кратность циркуляции водородсодержащего газа. Суммарное содержание серы в дистилляте мало что говорит о стабильности сернистых соединений. Выбор режима (сочетание температуры, объемной скорости и давления) диктуется индивидуальными свойствами сырья. В то же время известно, что чрезмерно глубокая сероочистка таких фракций, как керосиновые (реактивное топливо), вредна, так как из топлива удаляются естественные ингибиторы окисления. Сравнение образцов реактивных топлив, гидроочищенных до разной степени обессеривания и затем окисленных кислородом, показало, что с максимальной интенсивностью окисляются топлива с содержанием серы 0,03 мае. %. Практически на каждом заводе при риформинге имеется блок гидроочистки бензинов. Дизельные фракции подвергаются гидроочистке на специально построенных установках. На некоторых заводах построены установки гидроочистки керосина. Мощность установок гидроочистки бензина обычно составляет 300-1000, керосина 600-2000, дизельного топлива 1200-2000, вакуумного дистиллята 600-2000 тыс. т/год. Промышленные установки гидроочистки. Промышленные установки гидроочистки могут быть самостоятельными или комбинированными с другими установками. При этом гидроочистка может являться головным процессом комбинированной установки, замыкать ее или быть промежуточным звеном. Наиболее характерным примером первого случая является комбинированная установка риформинга бензина с его предварительной гидроочисткой. Типичный пример установок второго типа - установка гидроочистки реактивного топлива. В качестве третьего примера можно назвать комбинированную установку каталитического крекинга с предварительной гидроочисткой сырья - вакуумного газойля.
Известны схемы установок каталитического крекинга с глубокой гидроочисткой получаемых дизельных фракций с целью удаления сернистых соединений, насыщения непредельных углеводородов и частичного гидрирования бициклических ароматических углеводородов для повышения цетаново-го числа. Схемы промышленных установок, предназначенных для гидроочистки дистиллятов различного происхождения, довольно близки. Ниже описана технологическая схема типичной установки для гидроочистки топлив рис. 4.7. Сырьем служат прямогонные фракции с содержанием серы до 2,4 мае. %, полученные из высокосернистых нефтей, а также смеси прямогонных фракций и соответствующих дистиллятов вторичного происхождения. Установка имеет два блока, позволяющих перерабатывать два вида сырья раздельно, но имеющих некоторые общие элементы, в частности узел регенерации моноэтаноламина (МЭА), используемого для очистки циркулирующего газа от сероводорода. Рис. 4.7. Технологическая схема установки гидроочистки топлив: 1- насосы; 2-теплообменники; 3-трубчатые печи; 4-реакторы; 5-воздушные холодильники; 6-сепаратор высокого давления; 7-сепаратор низкого давления; 8-стабилизационная колонна; 9-сепараторы; 10-холодильник-конденсатор; 11-отгонная колонна; 12-кипятильник; 13-компрессоры; 14-емкости; 15,16-абсорберы; I-сырье; П-свежий водородсодержащий газ; Ш-водородсодержащий газ со второго блока; IV-водородсодер-жащий газ; IV-nap; V-бензин; VI-дизельное топливо; VII-сероводород; VIII-вода; IX-углеводородный газ; Х-водородсодержащий газ на второй блок; XI-моноэтаноламин со второго блока; ХП-моноэтаноламин на второй блок Сырье насосом 1 подают через теплообменник 2 в трубчатую печь 3. В линию насоса врезана линия циркулирующего водородсодержащего газа от компрессора 13. Нагретая до 360-380°С смесь сырья и циркулирующего газа проходит последовательно два реактора 4, заполненные катализатором (АКМ или АНМ). Предусмотрена возможность съема избыточного тепла реакции путем подачи в реакторы части холодного циркулирующего газа. Продукты реакции в виде газопаровои смеси выходят из второго по ходу реактора, отдают часть тепла газосырьевой смеси, проходя через межтрубное пространство теплообменника 2, охлаждаются в воздушном холодильнике 5 и поступают в сепаратор 6 высокого давления, где от нестабильного катализата отделяется водородсодержащий газ, обогащенный сероводородом. Для удаления сероводорода используется очистка моноэтаноламином в абсорбере 16. Очищенный газ направляют в буферную емкость 14 для отделения захваченных капель раствора и обеспечения работы компрессора 1. В емкость 14 подают также свежий водород. В катализате, выходящем из сепаратора 7, помимо целевой фракции дизельного топлива содержится некоторое количество легких продуктов разложения (продукты гидрокрекинга) - тяжелые газовые компоненты и бензиновые фракции. Чтобы отделить эти фракции, направляют гидрогенизат через теплообменник в стабилизационную колонну 8. Отпаривание легких фракций проводят, возвращая часть дизельного топлива из колонны 8 в печь. Балансовое количество гидроочищенного дизельного топлива проходит теплообменник и воздушный холодильник. В нижней правой части схемы показана система регенерации водного раствора моноэтаноламина, насыщенного сероводородом. Выделившийся в стабилизационной колонне 8 и очищенный от сероводорода в абсорбере 15 углеводородный газ дожимают компрессором 13 до 1,0 МПа и выводят с установки. Отпаренный в отгонной колонне 11 раствор моноэтаноламина после охлаждения возвращают в абсорберы 15 и 16, а сероводород выводят из системы. Таблица 4.3 Технологический режим процесса гидроочистки дистиллятных фракций
Таблица 4.4 Выход продуктов гидроочистки нефтяных фракций
В табл. 4.3 и 4.4 даны технологический режим и выход продуктов гидроочистки нефтяных фракций.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|