Гидравлический удар в трубопроводе
⇐ ПредыдущаяСтр 20 из 20 Гидравлическим ударом называют резкое повышение давления, возникающее в напорном трубопроводе при внезапном торможении потока жидкости. По сути, гидравлический удар представляет собой колебательный процесс, возникающий в упругом трубопроводе с капельной жидкостью при внезапном изменении ее скорости, Этот процесс является очень быстротечным и характеризуется чередованием резких повышений и понижений давления. Изменение давления при этом тесно связано с упругими деформациями жидкости и стенок трубопровода. Гидравлический удар чаще всего возникает при быстром закрытии или открытии крана или иного устройства управления потоком. Однако могут быть и другие причины его возникновения. Проследим стадии гидравлического удара, возникающего в трубопроводе при быстром перекрытии потока (рисунок 6.4). Пусть в конце трубы, по которой жидкость движется со скоростью , произведено мгновенное закрытие крана А. Тогда (см. рисункок 6.4, а)скорость частиц жидкости, натолкнувшихся на кран, будет погашена, а их кинетическая энергия перейдет в работу деформации стенок трубы и жидкости. При этом стенки трубы растягиваются, а жидкость сжимается. Давление в остановившейся жидкости возрастает на Δ p уд. На заторможенные частицы жидкости у крана набегают другие частицы и тоже теряют скорость, в результате чего сечение п—п перемещается вправо со скоростью с, называемой скоростью ударной волны, сама же переходная область (сечение п—п), в которой давление изменяется на величину Δ p уд, называется ударной волной. Когда ударная волна достигнет резервуара, жидкость окажется остановленной и сжатой во всей трубе, а стенки трубы — растянутыми. Ударное повышение давления Δ p уд распространится на всю трубу (см. рис. 6.4, б).
Но такое состояние не является равновесным. Под действием повышенного давления (р 0 + Δp уд) частицы жидкости устремятся из трубы в резервуар, причем это движение начнется с сечения, непосредственно прилегающего к резервуару. Теперь сечение п—п перемещается по трубопроводу в обратном направлении — к крану — с той же скоростью с, оставляя за собой в жидкости давление p 0 (см. рисунке 6.4, в). Жидкость и стенки трубы возвращаются к начальному состоянию, соответствующему давлению p 0. Работа деформации полностью переходит в кинетическую энергию, и жидкость в трубе приобретает первоначальную скорость , но направленную в противоположную сторону. С этой скоростью «жидкая колонна» (см. рисунок 6.4, г) стремится оторваться от крана, в результате возникает отрицательная ударная волна (давление в жидкости уменьшается на то же значение Δ p уд). Граница между двумя состояниями жидкости направляетсяот крана к резервуару со скоростью с, оставляя за собой сжавшиеся стенки трубы и расширившуюся жидкость (см. рисунок 6.4, д). Кинетическая энергия жидкости вновь переходит в работу деформации, но с противоположным знаком. Состояние жидкости в трубе в момент прихода отрицательной ударной волны к резервуару показано на рисунке 6.4, е. Так же как и для случая, изображенного на рисунке 6.4, б,оно не является равновесным, так как жидкость в трубе находится под давлением (р 0 - Δp уд), меньшим, чем в резервуаре. На рисунке 6.4, ж показан процесс выравнивания давления в трубе и резервуаре, сопровождающийся возникновением движения жидкости со скоростью . Очевидно, что как только отраженная от резервуара ударная волна достигнет крана, возникнет ситуация, уже имевшая место в момент закрытия крана. Весь цикл гидравлического удара повторится. Теоретическое и экспериментальное исследования гидравлического удара в трубах было впервые выполнено Н.Е.Жуковским. В его опытах было зарегистрировано до 12 полных циклов с постепенным уменьшением Δ p уд. В результате проведенных исследований Н.Е.Жуковский получил аналитические зависимости, позволяющие оценить ударное давление Δ p уд. Одна из этих формул, получившая имя Н.Е.Жуковского, имеет вид
, (6.1) где скорость распространения ударной волны с определяется по формуле , где К — объемный модуль упругости жидкости; Е — модуль упругости материала стенки трубопровода; d и δ — соответственно внутренний диаметр и толщина стенки трубопровода. Формула (6.1) справедлива при прямом гидравлическом ударе, когда время перекрытия потока tзак р меньше фазы гидравлического удара t 0: , где l — длина трубы. Фаза гидравлического удара t 0 — это время, за которое ударная волна движется от крана к резервуару и возвращается обратно. При t закр > t 0 ударное давление получается меньше, и такой гидроудар называют непрямым. При необходимости можно использовать известные способы «смягчения» гидравлического удара. Наиболее эффективным из них является увеличение времени срабатывания кранов или других устройств, перекрывающих поток жидкости. Аналогичный эффект достигается установкой перед устройствами, перекрывающими поток жидкости, гидроаккумуляторов или предохранительных клапанов. Уменьшение скорости движения жидкости в трубопроводе за счет увеличения внутреннего диаметра труб при заданном расходе и уменьшение длины трубопроводов (уменьшение фазы гидравлического удара) также способствуют снижению ударного давления.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|