Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Интегрирование тригонометрических функций




Рассмотрим интегралы вида . Такие интегралы могут быть сведены к интегралам от рациональных функций заменой переменной , где

Такая замена называется универсальной тригонометрическая подстановкой.

В этом случае,

Тогда

.

 

Пример 7. Найти

Решение:

Положим . Тогда, используя выражения через t для dx и sin x, указанные выше, получаем, что искомый интеграл равен

 

При вычислении интегралов вида

рассмотрим частные случаи:

n – нечётное

n, m – чётные, .

применяют формулы тригонометрии:

 

При вычислении интегралов вида делают замену , тогда

Если интеграл имеет вид

,

где n, m – чётные, применяют формулу:

Пример 8. Вычислить интегралы:

а)

б)

Решение:

а)

б)

 

При вычислении

используют формулы

 

Интегрирование иррациональных выражений

При вычислении интегралов, содержащих иррациональные выражения применяют замену переменной.

Если ,

то , где

Если

то , где

Лекция13

Определённый интеграл, его свойства

 

Пусть на отрезке задана функция y=f(x). Разобьем отрезок на n элементарных отрезков точками . На каждом отрезке разбиения выберем некоторую точку и положим , где . Сумму вида

будем называть интегральной суммой для функции y=f(x) на . Очевидно, что интегральная сумма зависит как от способа разбиения отрезка точками , так и от выбора точек на каждом из отрезков разбиения , .

 

 
 

 


Если существует предел , не зависящий от способа разбиения отрезка и выбора точек , то этот предел будем называть определённым интегралом функции f(x) на отрезке и обозначать символом т.е.

Функция f(x) в этом случае называется интегрируемой на отрезке . При этом f(x) называется подынтегральной функцией, f(x)dxподынтегральным выражением, а числа a и bпределами интегрирования (a – нижний предел, b – верхний предел), а сумма интегральной суммой.

Теорема. Если функция f(x) непрерывна на отрезке , то она интегрируема на этом отрезке.

Свойства определённого интеграла

1.

2. Постоянный множитель можно выносить за знак определённого интеграла:

3. Определённый интеграл от суммы двух функций равен сумме определённых интегралов от этих функций:

4. При перестановке пределов интегрирования определённый интеграл меняет знак на противоположный:

5. Интеграл по отрезку равен сумме интегралов по его частям:

где a<c<b.

6. Теорема об оценке интеграла

Если для , тогда значения интеграла от этой функции не менее произведения m на длину отрезка и не более произведения M на длину отрезка.

7. Теорема о среднем значении

Если f(x) непрерывна на отрезке , то существует такое значение , что f(x0)=fср – среднее значение f на отрезке.

Теорема Ньютона-Лейбница

Если функция f(x) непрерывна на отрезке и F(x) – первообразная функции f(x) на этом отрезке, то

Эта формула называется формулой Ньютона-Лейбница.

 

 

При вычислении интегралов ее часто записывают в виде

Например, =

Замена переменной в определённом интеграле

Предположим, что функция f(x) непрерывна на отрезке , функция имеет на отрезке непрерывную производную, при этом и Тогда

 

Пример 9. Найдём

Решение:

Воспользуемся подстановкой x= sin t; тогда . Найдём новые пределы интегрирования: если х=0, то t=0, если х=1, то . Получим

.

 

Интегрирование по частям

Пусть u=u(x), v=v(x) – непрерывно дифференцируемые на функции. Тогда справедлива формула

или

 

Пример 10. Найти

Решение: Положим u=x, откуда

Согласно формуле находим

Геометрические приложения определённого интеграла

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...