Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Материалы. Применяемые в конструкции ВС




Алюминиевые сплавы. Вследствие высоких механических свойств и небольшой плотности они занимают основное место в самолето­строении и составляют 70—80% массы конструкции самолета (вертолета). Чистый алюминий — серебристо-белый металл с плот­ностью v = 2,7 г/см3 и температурой плавления tnil = 660° С. Он обладает высокими электро- и теплопроводностью. Отрицательные свойства: высокий коэффициент температурного расширения (в 2—3 |,раза больше, чем у стали), склонность к остаточным деформациям, снижение прочности при нагревании до J250°.,,Q- Для улучшения механических свойств к алюминию добавляются легирующие элементы.

В Самолетостроении широко применяется дюралюминий — сплав на основе алюминия, в который вводятся медь и магний для повышения прочности и твердости, марганец — для повышения коррозионной стойкости. Высоколегированный дюралюминии Д16 применяется для силовых элементов конструкции воздушных судов, деталей каркаса, лонжеронов, шпангоутов, нервюр, обшивки. Низ­колегированный дюралюминий Д16 применяется только для закле­пок.

Для наиболее ответственных силовых элементов (лонжеронов, стрингеров, нервюр, шпангоутов) применяется сплав В95, высо­кая прочность которого обеспечивается наличием в нем меди, маг­ния и цинка. Для повышения коррозионной стойкости в сплав вводятся марганец и. хром.

Магниевые сплавы. Среди технических металлов магний обла­дает наименьшей плотностью у = 1,74 г/см3, что оправдывает повы­шенный интерес к нему и его сплавам. Температура плавления 651° С. По характеру горения магний и его сплавы относятся к группе «летучих» металлов, т. е. при горении находятся в жидком состоянии. Воспламеняемость магниевых сплавов возможна при го­рении топлива, тормозной жидкости, резины и других материалов. Температура горения развивается до 3100°С, что пагубно для элементов конструкции воздушных судовГо"днако магниевые сплавы широко применяют в конструкции самолета и вертолета. Из них отливают тормозные барабаны колес, штурвалы, качалки, крон­штейны, корпуса агрегатов топливной, масляной и гидросистем само­лета и двигателя, каркасы кресел пассажирских салонов и пилот­ских кабин. На турбовинтовых двигателях (ТВД) их применяют для изготовления картера редуктора и лобового картера.

Титановые сплавы. Титан имеет серебристо-белый цвет, плот­ность у= 4,5 г/см3, температуру плавления 1668^0, обладает значительной коррозионной стойкостью. Титановые сплавы исполь­зуются для изготовления обшивки самолетов, передних кромок крыла и стабилизатора, лонжеронов, нервюр, шпангоутов, противопожарных перегородок, створок шасси, закрылков, глушителей. В двигателях титановые сплавы используются для изготовления деталей компрессора: лопаток и дисков, капотов, наружных кожу­хов камер сгорания, реактивных сопел и выхлопных патрубков. Титановые сплавы не теряют своих рабочих свойств при темпера­турах от 300 до 700° С (в зависимости от марки сплава и его назначения). При определенно создавшихся условиях они могут гореть. Температура горения развивается до 3500°С Тушение горящих титановых сплавов современными огнегасящими веществами практически приводит к незначительным результатам.

Пластические массы. Пластмассами называются органические вещества, переходящие при нагревании в пластичное состояние, что позволяет изготовлять из них детали нужной формы 'путем горячего прессования. Пластмассы состоят обычно из смолы, на­полнителя, стабилизатора, пластификатора, отвердителя и специ­альных добавок. По применению пластмассы делятся на конст­рукционные, светопрозрачные, электроизоляционные, радиопрозрач­ные, прокладочные, уплотнительные, теплозвукоизоляционные, фрик­ционные, антифрикционные, кислотоупорные и химостойкие. Пласт­массы органического происхождения в большинстве случаев горючи, но имеют различную температуру воспламенения и интенсивность го­рения.

К светопрозрачным пластмассам относятся акрилаты (авиационное органическое стекло) — полимеры из эфиров, амидов и нитрилов акриловой и метакриловой кислот. В зависимости от температуры они могут находиться в трех состояниях: стеклообразном (до 105° С), высокоэластичном (105—150° С), вязкотекучем (150—275° С). При температурах 275—J1MLQ оргстекло разлагается. Марка оргстекла выбирается в зависимости от температуры, при которой работает остекление.

Триплекс — безосколочное органическое стекло. Органический триплекс представляет собой композицию из двух склеенных бутварной пленкой листов органического стекла. Он применяется при температурах —60-180° С. Высокотеплостойкий триплекс ОТ-200, склеенный эластичной прослойкой из поливинилбутиральной пленки, хорошо работает при температурах — 60-200° С. Применяется для остекленения герметических кабин высокоскоростных самолетов, для изготовления шлемов высотных костюмов.

Целлулоид является твердым раствором нитроцеллюлозы и кам­форы. Авиационный целлулоид АВ-1 выпускается в виде листов толщиной 1—3 мм, легко воспламеняется, применяется для задвиж­ных шторок таблиц, окон.

Для изготовления силовых деталей используются слоистые плас­тики — текстолит, стеклотекстолит, гетинакс. Они отличаются высо­кой механической стойкостью.

Стеклотекстолит получают горячим прессованием слоев стеклян­ной ткани, пропитанной резольной бакелитовой смолой. Он хими­чески и термически устойчив, не горит, применяется для изго­товления контейнеров топливных баков.

Гетинакс получают горячим прессованием слоев бумаги, про­питанной бакелитовой смолой. Он используется как конструкцион­ный и электроизоляционный материал.

Текстолит применяют для изготовления бесшумных зубчатых колес, роликов, прокладок, штурвалов, электрощитков, панелей с электрооборудованием.

К электроизоляционным пластмассам относится полистирол, представляющий собой твердый стекловидный продукт. Из него де­лают различные изолирующие детали радиолокационного и электро­технического оборудования. Изготовленная из полистирола пленкатолщиной 0,02 мм испбльзуется вместо слюды в конденсаторах высокочастотных установок.

Полиэтилен эластичен при низких температурах (до —45° С). Применяется для изоляции высокочастотных кабелей.

Асболит применяется для изготовления элементов фрикционов. Асботекстолит применяется для фрикционных дисков передач к нагнетателям и других деталей, где имеется трение с выделением тепла. Тормозная плетеная лента из асбеста с сердечником из мед­ной или латунной проволоки, пропитанная фенолоформальдегидной смолой, имеет высокий коэффициент трения, применяется для из­готовления тормозных колодок авиаколес.

Из резины изготовляют пневматики колес шасси, резинотка­невые топливные баки, гибкие шланги, коврики, различные уплот­нения для входных дверей, люков, окон. При горении развивается высокая температура, резина обугливается, выделяется много сажи.

Материалы, применяемые для пассажирского и бытового обору­дования. Пенопласт ПХВ-1 —пенистый, твердый, конструкционный негорючий материал с равномерно пористой структурой. Пенопласт легко обрабатывается деревообделочным инструментом. Из пено­пласта изготовляются перегородки, двери, столы и полы.

Поропласт — пористый полиуретановый эластичный материал. Из него делают подушки пассажирских кресел. Поропласт при­меняется также в виде упругого мягкого подслоя под декоративно-облицовочный павинол.

Авиационный павинол, получивший название «дублер», наклеи­вается на поропласт. Им облицовываются стены и потолки. Он снижает массу конструкции, имеет хорошие теплозвукоизолирующие свойства, приятный декоративный вид.

Слоистый пластик (гетинакс) — жесткий облицовочно-конструкционный материал с глянцево-гладкой лицевой поверхностью. Им облицовывают стены туалета и буфета, столы в пассажирских салонах.

Капроновые ковровые дорожки покрывают полы всех помеще­ний, кроме туалетов и багажных отделений. Дорожки состоят из капроновой ворсовой ткани (гладкой или с рисунком) и подслоя из латексной губчатой резины.

Резиновые коврики из резиновой смеси с добавлением антипирена имеют рифленую поверхность, предназначены для покрытия полов в вестибюлях, туалетах и буфете-кухне.

Винилкожа АИК — трикотажная ткань с пористомонолитным поливинилхлоридным покрытием применяется для облицовки сидений и подлокотников пассажирских кресел.

Драпировочные ткани используют для портьер пассажирских салонов. Занавески для окон — вискозные или синтетические и имеют огнеупорную пропитку.

Винипласт — жесткий облицовочный материал, хорошо форму­ется. Применяется для изготовления межоконных панелей и обли­цовочных панелей аварийных люковДревесные материалы применяют для интерьера кухни-буфета, полов, перегородок, дверей и столов, для изготовления панелей облицовок салонов, бытовых и вспомогательных помещений. Для этих целей используют фанеру, которая перфорируется для умень­шения массы, а также фанеру в конструктивном пакете с пено­пластом. Для увеличения срока службы древесину пропитывают антисептиком (против грибков) и огнестойкими веществами. При горении образуются уголь, метиловый спирт, уксусная кислота, окись углерода, метан и другие углеводороды.

СИЛОВЫЕ УСТАНОВКИ

К силовой установке относятся: двигатель, воздушный винт, рама крепления двигателя, капот, системы всасывания воздуха', выпуска отработавших газов, обдува агрегатов двигателя, топлив­ная и масляная системы двигателя, системы запуска двигателя и пожаротушения.

В гражданской авиации применяют силовые установки с поршневыми двигателями (ПД),на самолетах Ан-2, Ил-14 и вертолетах МИ-4 и Ка-26и с газотурбинными двигателями (ГТД); турбо­винтовыми (ТВД) на самолетах ан-12, Ан-8, Ан-24, турбореактивными двухконтурными (ТРДД) на самолетах Ту-154, Ил-62, Ил-86, Як-42 и турбореактивными (ТРД), в основном на вертолетах.

Поршневые двигатели. Авиационные поршневые двигатели пред­ставляют собой звездообразные четырехтактные двигатели, работаю­щие на бензине. Охлаждение цилиндров ПД выполняется, как пра­вило, воздушным потоком. В зависимости от способа смесеобразо­вания топлива с воздухом ПД подразделяются на карбюраторные (ПД АШ-62ИР на самолете Ан-2 и ПД М-14В26 на вертолете Ka-26 и двигатели с непосредственным впрыском (ПД АШ-82Т на самолете Ил-14 и ПД АШ-82В на вертолете Ми-4). Для улучшения охлаждения цилиндры располагают в виде звезды. Основными конструктивными узлами ПД являются: цилиндропоршневая группа, шатунный механизм, коленчатый вал, редуктор, механизм газорас­пределения, нагнетатель, картер и приводы агрегатов. Помимо этого, двигатели имеют топливную и масляную систему зажигания, запуска, охлаждения противопожарную защиту, а также агрегаты, которые обслуживают этисистемы.

Горючие материалы в конструкции ПД: магниевыесплавы в конструкциях картера и редуктора, корпуса нагнетателя, корпусов агрегатов масляной, топливной и гидравлической систем, резина в гибких трубопроводах топливной и масляной систем; моторное масло в маслобаке, маслорадиаторе, картере, трубопроводах; топливо в трубопровода и агрегатах топливной системы.

Возможные причины пожара на двигателе: прогар головки цилиндра; разрушение редуктора, нагнетателя или любого привода агрегатов; прогар или заклинивание поршня; обрыв клапанов в ци­линдре. В пожарном отношении опаснее задняя часть двигателя, так как там сосредоточены агрегаты топливной, масляной, гид­равлической систем и выхлопной коллектор. При разрушении тру­бопроводов и попадании на раскаленный выхлопной коллектор бензина, масла, АМГ-10 пожар неизбежен.

Подходы для тушения пожара:

спереди со стороны входа воздуха системы охлаждения дви­гателя;

через открытые юбки капота в задней части двигателя;

через лючки слива масла, топлива, подогрева двигателя;

через отверстия с использованием стволов-пробойников, ломов-распылителей.

Газотурбинные двигатели. Используемые в гражданской авиации на воздушных судах в качестве силовых установок типы ГТД — ТРД, ТВД, ТРДД по конструкции и принципу работы во многом схожи. В качестве топлива в ГТД используется керосин..

ТРД состоит из входного устройства, компрессора, камеры сго­рания, газовой турбины и выходного устройства.

Камера сгорания является одним из основных элементов ГТД и расположена за компрессором. В конструктивном отношении камеры сгорания выполняются трубчатыми, кольцевыми и трубчато-кольцевыми. В передней части камеры сгорания устанавлива­ются топливные форсунки и завихритель, служащий для стабилиза­ции пламени. На камере сгорания имеются отверстия для подвода воздуха, предотвращающего перегрев стенок камеры сгорания. Топливо поджигается запальными устройствами. Основные нагрузки для камер сгорания — тепловые, вызываемые неравномерностью на­грева стенок. Большинство случаев их перегрева и прогара связано с неправильным расположением факела пламени.

В отличие от поршневого двигателя рабочий процесс в ГТД не разделен на отдельные такты, а протекает непрерывно. Бла­годаря компрессору ТРД могут создавать тягу при работе на месте. В полете воздушный поток проходит через входное устройство, в котором происходит предварительное сжатие воздуха, затем в компрессоре происходят более значительное сжатие воздуха и рост температуры. Далее сжатый воздух из компрессора поступает в камеру сгорания, разделяясь на два потока. В камере сгорания происходят смесеобразование топлива с воздухом и смешение про­дуктов сгорания с вторичным потоком воздуха. Температура в зоне горения 1500—2000° С. Во избежание перегрева камера сгорания охлаждается вторичным воздухом, который затем, пере­мешиваясь с продуктами сгорания, снижает температуру газа на входе в турбину до температур 800—950° С. Газовый поток уст­ремляется на турбину через суживающийся сопловой аппарат, где скорость его резко возрастает до 450—500 м/с. В выходном сопле осуществляется дальнейшее расширение газа, давление его уменьшается, а скорость возрастает, достигая на выходе из двигателя при работе его на земле 550—650 м/с, а в полете значительно больших значений. Скорость и температура газов продолжают оставаться высокими на значительном расстоянии от реактивного сопла. Так, температура газов, равная 100° С, удерживается на расстоянии 12—15 м от двигателя.

ТВД называется ГТД, турбина которого развивает большую мощность, чем требуется для, вращения компрессора, и передает эту избыточную мощность на воздушный винт.

ТВД состоит из таких же узлов и агрегатов, что и ТРД, fio дополнительно снабжен воздушным винтом, вал которого соединя­ется с валом компрессора через редуктор, уменьшающий частоту вращения до наибольшего значения КПД винта. Кроме того, в ТВД имеется многоступенчатая турбина, число ступеней которой от 2 до 6 для большего расширения газа. Тяга у ТВД создается главным образом воздушным винтом (до 90%) и незначительно за счет реакции газовой струи.

Горючие материалы в ГТД аналогичны материалам поршневого двигателя. В ТВД магниевых сплавов больше в передней части двигатели картер редуктора, лобовой картер, корпуса агрегатов топливной, масляной и гидравлической системах. В пожарном отношении опасны также маслобаки в районе компрессора, топливно-масляные радиаторы, трубопроводы с маслом, топливом и гидрожидкостью, электропроводка.

Причины, приводящие к пожару ГТД: разрушение подшипников валов винта, компрессора, турбины; разрушение редуктора; обрыв лопаток компрессора, турбины; прогар камеры сгорания; разрушение топливных, масляных магистралей; превышение температуры газов при запуске; выброс пламени по причине переобогащения смеси или плохой раскрутке ротора.

ГТД запускаются по заданной программе. После нажатия на кнопку запуска определенные секунды работают пусковые блоки (свеча и форсунка), идет раскрутка ротора или от сжатого воз­духа ВСУ, или от электростартеров, подается пусковое топливо, затем рабочее топливо и двигатель выходят на заданную частоту вращения земного малого газа. Программным механизмом служит автоматическая панель запуска двигателя (АПД).

Причиной неудачного запуска и выброса пламени может быть недостаточная раскрутка ротора из-за слабого источника запуска двигателя. Топливо подается по заданной программе, а воздуха недостаточно для горения топлива. Происходит обогащение рабо­чей смеси, которая не успевает сгорать полностью в камере сгорания и догорает в реактивном сопле, газоотводящей трубе и иногда с разливом под двигателем. Если пламя, выброшенное из двигателя, укорачивается и переходит из красновато-коптящего в голубое (светлое), можно считать процесс запуска условно нормальным, и наоборот.

Если в новом двигателе не произвели достаточного удаления продуктов расконсервации из внутренней полости путем холодной прокрутки ротора, то возможен выброс пламени по причине обога­щения смеси. Причиной выброса пламени может быть позднее зажигание топлива, что приводит к его скоплению и выбросу с хлоп­ком, большим пламенем и изливом горящего топлива из сопла.

ТВД к указанным выбросам более склонны, так как раскрутка ротора и редуктора с винтом затрудняется, особенно в зимнее время из-за загустевания масла в редукторе.

На стоянках запуска должны быть первичные средства пожаро­тушения. Должна быть двусторонняя, связь запускающего дви­гатель с наземным техником, чтобы выключить двигатель по пер­вому сигналу опасности.

При пожаре в мотогондоле двигателя огнетушащие составы по­дают через лючки снизу мотогондол (слив масла, топлива, подо­грев двигателя) или пробивают обшивку стволами-пробойниками. При пожаре внутри двигателя огнетушащие составы подают в газо­воздушный тракт спереди или сзади со стороны выходного сопла. Пожаротушение производится при выключенном двигателе, на ТВД — при остановленном винте.

Исходя из вышеупомянутой конструкции ГТД задняя часть двигателя после компрессора наиболее пожароопасна.

Пожарная опасность силовых установок по их размещению на воздушном судне.При размещении СУ в носовой части фюзеляжа (Ан-2) пожар, возникающий в двигателе, охватывает и кабину эки­пажа. Пилотирование затрудняется или становится невозможным.

При размещении СУ на крыле (Ан-24, Ил-18, Ан-8, ан-12, Ан-26, Ан-28, Ан-30) в случае пожара двигателя существует опас­ность его распространения на крыло, где размещено топливо.

При размещении СУ в хвостовой части фюзеляжа (Ил-62, Ту-154, Як-42, Як-40, Ту-134) опасность загорания крыла от двигателей исключается, уменьшается шум в пассажирских салонах, подъемная сила крыла увеличивается, так как крыло «чистое» и работает вся его площадь, но близость расположения СУ к фюзеляжу и опере­нию также вызывает пожарную опасность последних в случае пожара на двигателе.

Размещение СУ под крылом на пилонах (Ил-76, Ил-86) дела­ет крыло «чище» в сравнении с размещением двигателей на крыле. Пожарная опасность несколько снижается для крыла. Обслужива­ние двигателей удобнее. Однако двигатели подвержены поврежде­нию из-за всасываемых посторонних предметов с ВПП рулежной дорожки (РД) в большей степени, чем двигатели с другим распо­ложением, что может вызвать разрушение двигателя и пожар.

Размещение СУ под фюзеляжем (Ту-144) в пожарном отноше­нии опасней, чем расположение СУ под крылом или в хвостовой части фюзеляжа, так как в центроплане размещено топливо. Под­сос посторонних предметов не исключен.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...