Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Лекция 2: задачи математического и линейного программирования. Модели линейного программирования.




1. Понятие математического и линейного программирования

2. Модель линейного программирования.

Нередко экономические задачи имеют не единственное решение и требуется выбрать лучшее – оптимальное из них. Моделирование таких задач сводится к задачам математического программирования (ЗМП).

Математическое программирование – область математики, изучающая оптимизационные процессы посредством поиска экстремума функции при заданных ограничениях.

Сформулируем в общем виде ЗМП:

(2.1)

при условиях

(2.2)

(2.3)

где целевая функция, условия (2.2) – специальные ограничения, условия (2.3) – общие ограничения ЗМП.

Точку , координаты которой удовлетворяют ограничениям (2.2) и (3.3), называют допустимым решением ЗМП.

Множество всех допустимых решений ЗМП называют допустимым множеством.

Допустимое решение , удовлетворяющее соотношению (2.1), называют оптимальным решением ЗМП.

Если в ЗМП целевая функция и функции , – линейные, то имеем общую задачу линейного программирования (ЗЛП):

(2.4)

(2.5)

(2.6)

 

В зависимости от вида специальных ограничений различают следующие ЗЛП:

- каноническая ЗЛП, включающая в качестве ограничений (2.5) только уравнения, т. е.

;

- стандартная ЗЛП, включающая в качестве ограничений (2.5) только неравенства, т. е.

Рассмотрим следующие примеры моделей, приводимых к ЗЛП.

Пример 1. Экономико-математическая модель задачи о планировании производства.

На заводе имеются запасы трех видов сырья: , и , из которого можно наладить производство двух видов товаров: и . Запасы сырья, норма его расхода на производство единицы товаров, а также прибыль от реализации единицы каждого товара приведены в таблице 2.1 (цифры условные).

Таблица 2.1

Сырье Товары Прибыль
       
       
Запасы        

 

Необходимо составить такой план производства товаров, при котором прибыль от их реализации будет максимальной.

Решение.

План производства зададим числами и , где – количество единиц товара , которое следует произвести . Неизвестные и должны удовлетворять условиям

или , (2.7)

(2.8)

 

Поясним смысл первого неравенства системы (2.7). В левой части записано количество сырья , которое расходуется на выпуск единиц товара и единиц товара . Это количество не должно превышать имеющегося запаса сырья , т. е. 126 единиц. Аналогичный смысл имеют второе и третье неравенства системы (2.7).

Прибыль, предприятия от реализации плана (, ) производства товаров, очевидно, составит

. (2.9)

В интересах предприятия максимизировать эту прибыль. Следовательно, чтобы составить план производства товаров, при котором прибыль от их реализации будет максимальной нужно решить стандартную ЗЛП: при условиях (2.7) и (2.8):

Пример 2. Экономико-математическая модель задачи о диете.

Имеются два вида продуктов: и . Содержание в 1 кг питательных веществ A, B и C, ежесуточные потребности организма V в них и стоимость S 1 кг продуктов приведены в таблице 2.2

Таблица 2.2

Витамины Продукты A B C S
       
       
V        

Составить такую ежесуточную диету, которая обеспечивает необходимое количество питательных веществ при минимальных затратах на продукты.

Решение.

Пусть и – искомые количества продуктов и соответственно. Их стоимость составляет

 

Общее количество питательного вещества A в обоих видах продуктов равно . Оно должно быть не меньше 6 единиц: .

Аналогичные неравенства составим для питательных веществ B и C: и .

Очевидно, и .

Таким образом, получим следующую стандартную ЗЛП:

(2.10)

при условиях

(2.11)

 


 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...