Операторы математического анализа
Нахождение производной первого порядка осуществляется по нажатию клавиш ‘Shift’+‘/’. При этом производную можно вычислить либо в точке, либо получить ее аналитическое выражение. Например, производная в точке а аналитически . Если задана функция нескольких переменных, то данный оператор вычисляет частную производную по указанной переменной Для нахождения производных высших порядков необходимо нажать ‘Ctrl’+‘Shift’+‘/’ и задать порядок производной, переменную дифференцирования и функцию. Например, . Для вычисления смешанных производных функции нескольких переменных необходимо находить производную по одной переменной от производных по другим переменным. Например, Нахождение неопределенных интегралов, если это возможно, осуществляется по нажатию ‘Ctrl’+’I’. Например, . Для вычисления определенных интегралов необходимо нажать ‘Shift’+‘7’ и ввести пределы интегрирования, подынтегральную функцию, переменную интегрирования. После нажатия знака ‘=’ получим числовой результат. Например, . Все описанные символы операторов математического анализа можно ввести с помощью мыши из всплывающего меню (View Toolbars Calculus или Вид Панели инструментов Исчисления).
Функции и операторы матриц
Самый простой способ создания массива чисел состоит в создании массива из пустых полей и их последующем заполнении. Для этого нажмите ‘Ctrl’+’M’, чтобы вызвать диалоговое окно и определите в нем нужное количество строк и столбцов. Нажмите «OK», чтобы создать массив пустых полей. Щелкните на поле, чтобы выделить его, затем введите требуемое значение. Для перемещения между полями можно также использовать клавишу «Tab».
При определении больших массивов, для каждого элемента которых существует формула, через которую он выражается, удобнее использовать дискретные аргументы. Например, зададим двумерный массив (матрицу) (чтобы набрать последнюю формулу, необходимо с клавиатуры набрать ). После этого можно просмотреть получившуюся матрицу целиком, набрав , или любой элемент матрицы, набрав , и на экране автоматически появится . Для задания векторов необходимо указывать только один индекс. Например, При обращении к матрице необходимо помнить, что нумерация строк и столбцов начинается с 0. Например, если хотим получить элемент, стоящий на пересечении 2-й строки и 3-го столбца, необходимо запросить элемент . Операторы, определенные для векторов и матриц: сложение – ‘+’; векторное произведение – ‘Ctrl’+’8’; определитель – ‘|’; скалярное произведение – ‘*’; обратная матрица – ‘^-1’ (т.е. возведение в степень –1); степени матриц – ‘^’; умножение – ‘*’; нижний индекс – ‘[‘; вычитание – ‘– ‘; суммирование элементов – ‘Ctrl’+’4’; верхний индекс – ‘Ctrl’+’6’; транспонирование – ‘Ctrl’+’1’. Встроенные функции, определенные для матриц: rows(A) – число строк матрицы A; cols(A) – число столбцов матрицы A; max(A) – максимальный элемент матрицы A; min(A) – минимальный элемент матрицы A; rank(A) – ранг матрицы A; rref(A) – приведение матрицы A к ступенчатому виду; length(B) – количество элементов вектора B; augment(A, B) – объединение матриц A и B (добавлением матрицы B справа к матрице A); submatrix(A, a, b, c, d) – возвращает матрицу, состоящую из всех элементов, которые содержатся в строках с a по b и столбцах с c по d матрицы A; lsolve(A, B) – решение системы линейных уравнений с матрицей системы A и столбцом свободных элементов B. Все описанные операторы (кроме встроенных функций) можно ввести с помощью мыши из всплывающего меню (View Toolbars Matrix или Вид Панели инструментов Матрицы).
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|